

Dancing giants: binary stars on AGB and beyond

Adam Frankowski

N. Copernicus Astronomical Center, Toruń, Poland

Toruń, 2013.07.09

Stellar paths

Stellar paths

- Asymptotic Giant Branch (AGB) stars: luminous & cool, strong winds, thermal pulses, complex nucleosynthesis, dredge-up
- Enrichment of ISM in heavy elements:
 - C, F, s-process
- Mira (o Ceti)
- Progenitors of Planetary Nebulae (PNe)
- With binarity: symbiotics, Ba stars, SN Ia (?)

Planetary Nebula shapes

binary evolution scheme

1.	Main sequence			0	0		
2.	KIII, MIII	(Ti0)		\bigcirc	0		
3.	S(Tc)	(Zr0)			0		
4.	SC(Tc)	(Zr0, C ₂)			0		
5.	C(Tc)	(C ₂)	k		→ 0	RLOF or wind accretion	
6.	post-AGB			\bigcirc	0		
7.	PN			0	ÍO	Abell 35-like	
8.	hot WD			0	ÍO	WIRRing (KVBa)	
9.	WD			0	Ø	dwarf Ba (F stron	ng Sr407
10.				o		subgiant CH	
11.				0		giant Ba CH	(Pop.I) (Pop.II)
12.				0		S or C (no Tc) vellow symbiotic	(Pop.I) (Pop.II)
13.				0		C (Tc) (+ WD)	
14.				0		post-AGB (+ WD)	
15.				0	0	wide WD pair	

Sr4077)

Progeny of AGB stars in binaries...

...all binaries in which at least one component has gone through the AGB

binary evolution scheme

1.	Main sequence			0	0
2.	KIII, MIII	(Ti0)		\bigcirc	0
3.	S(Tc)	(Zr0)			0
4.	SC(Tc)	(Zr0, C ₂)			0
5.	C(Tc)	(<i>C</i> ₂)	k		→ ©
6.	post-AGB			\bigcirc	\bigcirc
7.	PN			0	$\langle 0 \rangle$
8.	hot WD			0	$\langle \circ \rangle$
9.	WD			0	\otimes
10.				0	
11.				0	
12.				0	
13.				0	
14.				0	
15.				0	0

RLOF or						
wind accretion						
Abell 35-like						
WIRRing (KVBa)						
dwarf $ _{C}^{Ba}$ (F strong Sr4077)						

subgiant CH giant Ba (Pop.I) CH (Pop.II) S or C (no Tc) (Pop.I) yellow symbiotic (Pop.II) C (Tc) (+ WD) post-AGB (+ WD)

wide WD pair

Progeny of AGB stars in binaries...

...includes several classes of s-process-rich stars resulting from mass transfer from a former AGB companion (now a white dwarf)

AGB and binarity

Not all descendands of AGB binaries are s-process-rich:

- Post-AGB stars (some s-process-rich, not all)
- Binary CSPNe
- Red symbiotics with massive WD companions (M_h > 0.5M_{sun})

 Observational bias against direct discovery while on the AGB: pulsations, turbulence, shocks, long orbital periods, large brightness contrast

• Indirect hints of binarity – bipolar outflows (V Hya), expanding tori (π Gru), fast rotation (yellow d' symbiotics)

 Binary fraction in the solar neighborhood from RV and astrometry: K giants: 15-30%, M giants: 14-20%

 Photometric observations of LMC variables: Period-Luminosity sequences: Long Secondary Periods

Sequence D: Pulsations? Rotation and spots? Ellipsoidal variables? Eclipsing variables?

Doubles binarity fraction of AGB stars!? Companions rather sub-stellar...

Only 5-10% of PNe are round, most are elliptical

Planetary Nebula shapes

- Only 5-10% of PNe are round, most are elliptical
- Any shaping mechanism requires angular momentum – an argument for a companion
- Ongoing search for companions to CSPNs (10%-20% are close binaries)

Symbiotic vs. Ba stars

Why some descendants of binary AGBs show s-process enhancement while others do not?

Almost solved (mostly due to initial abundances), with the notable exception of:

why red symbiotics are not S stars?

Symbiotic vs. Ba stars

How to reconcile orbital periods and eccentricities of systems that went though AGB?

- post-AGB binaries
- Ba and S stars
- Symbiotic stars

e-log P diagrams

The observational e-log P diagram of descendants from AGB systems

What about theory?

e – log P diagrams

Binary evolution channels/processes

- Tidal interactions
- Wind accretion, wind tidal enhancement
- Roche-lobe overflow
- Common envelope event

e-log P diagrams

 Binaries after the AGB – theory vs. observations...

e – log P diagrams

- Solutions proposed avoid drastic orbital shrinkage during CE:
- CRAP (Companion-Reinforced Attrition Process)

inhibits s-process exchange

- Diminished binding energy of the envelope is ionization energy recyclable?
- Inclusion of tidal forces

did not help

 Angular momentum balance-based CE (instead of energy based) what physics?

e – log P diagrams

Solutions proposed – stay eccentric:

Periastron mass-loss

Eccentricity pumping by a circumbinary disk

But: only for detached systems!

e-log P diagrams

 Perhaps there is hope. Could it be a transient torus effect?

Thank you, Romek!