

Complex organic molecules in hot cores

Arnaud Belloche

MPIfR, Bonn (Germany)

High-Resolution Submillimeter Spectroscopy of the Interstellar Medium and Star Forming Regions – From Herschel to ALMA and Bevond

Zakopane, 14 May 2015

Collaborators:

R. Garrod (Univ. of Virginia), H. Müller (Univ. of Cologne), K. Menten (MPIfR)

Complex organic molecules in the ISM

Search for interstellar COMs: line surveys!

COMs in hot cores

Outlook

▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●

Complex organic molecules in the ISM

- ▲ ロ ト 4 週 ト 4 画 ト - 通 - - - の Q ()

Meteorites and comets

 more than 80 amino acids found in meteorites on Earth, with isotopic composition and racemic distribution suggesting extraterrestrial origin (e.g., Botta & Bada 2002)

Meteorites and comets

- more than 80 amino acids found in meteorites on Earth, with isotopic composition and racemic distribution suggesting extraterrestrial origin (e.g., Botta & Bada 2002)
- glycine (NH₂CH₂COOH) detected in samples returned from comet 81P/Wild 2 by Stardust mission (Elsila+ 2009)

Meteorites and comets

- more than 80 amino acids found in meteorites on Earth, with isotopic composition and racemic distribution suggesting extraterrestrial origin (e.g., Botta & Bada 2002)
- glycine (NH₂CH₂COOH) detected in samples returned from comet 81P/Wild 2 by Stardust mission (Elsila+ 2009)

Basic questions

are meteoritic amino acids and cometary glycine pristine interstellar molecules? Did the ISM contribute to seeding life on Earth?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

Meteorites and comets

- more than 80 amino acids found in meteorites on Earth, with isotopic composition and racemic distribution suggesting extraterrestrial origin (e.g., Botta & Bada 2002)
- glycine (NH₂CH₂COOH) detected in samples returned from comet 81P/Wild 2 by Stardust mission (Elsila+ 2009)

Basic questions

- are meteoritic amino acids and cometary glycine pristine interstellar molecules? Did the ISM contribute to seeding life on Earth?
- are such molecules widespread in the Galaxy?

Meteorites and comets

- more than 80 amino acids found in meteorites on Earth, with isotopic composition and racemic distribution suggesting extraterrestrial origin (e.g., Botta & Bada 2002)
- glycine (NH₂CH₂COOH) detected in samples returned from comet 81P/Wild 2 by Stardust mission (Elsila+ 2009)

Basic questions

- are meteoritic amino acids and cometary glycine pristine interstellar molecules? Did the ISM contribute to seeding life on Earth?
- are such molecules widespread in the Galaxy?
- what is the degree of chemical complexity in the ISM?

 about 190 molecules detected in the ISM or in circumstellar envelopes over 8 decades (1937–2015) (only 3 before 1963)

(日) (字) (日) (日) (日)

- about 190 molecules detected in the ISM or in circumstellar envelopes over 8 decades (1937–2015) (only 3 before 1963)
- on average since 1963 (radioastronomy), about 7 new molecules every 2 years

(日) (字) (日) (日) (日)

13 new detections in 2013–2015

- about 190 molecules detected in the ISM or in circumstellar envelopes over 8 decades (1937–2015) (only 3 before 1963)
- on average since 1963 (radioastronomy), about 7 new molecules every 2 years

・ロト ・ (目 ト ・ 目 ト ・ 日 -)

- 13 new detections in 2013–2015
- ► complex molecules (for astronomers): ≥ 6 atoms (Herbst & van Dishoeck 2009)
- one third of detected molecules are complex
- all detected complex molecules are organic (COMs)

- about 190 molecules detected in the ISM or in circumstellar envelopes over 8 decades (1937–2015) (only 3 before 1963)
- on average since 1963 (radioastronomy), about 7 new molecules every 2 years
- 13 new detections in 2013–2015
- ► complex molecules (for astronomers): ≥ 6 atoms (Herbst & van Dishoeck 2009)
- one third of detected molecules are complex
- all detected complex molecules are organic (COMs)

⇒ how do COMs form in the interstellar medium?

gas phase chemistry: mainly driven by ions, cannot explain abundances of all COMs

- gas phase chemistry: mainly driven by ions, cannot explain abundances of all COMs
- grain surface chemistry: mainly driven by radicals produced by energetic photons or cosmic-rays
 - hot-core models: warm-up phase increases mobility of radicals and promotes their recombination to form COMs before desorption (e.g. Garrod+ 2008)
 - multi-layer (e.g. Taquet+ 2012, Vasyunin & Herbst 2013a, Garrod 2013)

- gas phase chemistry: mainly driven by ions, cannot explain abundances of all COMs
- grain surface chemistry: mainly driven by radicals produced by energetic photons or cosmic-rays
 - hot-core models: warm-up phase increases mobility of radicals and promotes their recombination to form COMs before desorption (e.g. Garrod+ 2008)
 - multi-layer (e.g. Taquet+ 2012, Vasyunin & Herbst 2013a, Garrod 2013)
- COMs in prestellar cores at low temperature (Öberg+ 2010, Bacmann+ 2012, Cernicharo+ 2012):
 - reactive desorption of COM precursors followed by radiative association? (Vasyunin & Herbst 2013b)
 - non-thermal desorption in core outer layers? (Vastel+ 2014, Bizzocchi+ 2014)
 - revision/expansion of gas-phase reaction network? (Balucani+ 2015)

- gas phase chemistry: mainly driven by ions, cannot explain abundances of all COMs
- grain surface chemistry: mainly driven by radicals produced by energetic photons or cosmic-rays
 - hot-core models: warm-up phase increases mobility of radicals and promotes their recombination to form COMs before desorption (e.g. Garrod+ 2008)
 - multi-layer (e.g. Taquet+ 2012, Vasyunin & Herbst 2013a, Garrod 2013)
- COMs in prestellar cores at low temperature (Öberg+ 2010, Bacmann+ 2012, Cernicharo+ 2012):
 - reactive desorption of COM precursors followed by radiative association? (Vasyunin & Herbst 2013b)
 - non-thermal desorption in core outer layers? (Vastel+ 2014, Bizzocchi+ 2014)
 - revision/expansion of gas-phase reaction network? (Balucani+ 2015)

⇒ predictions of chemical models need to be tested observationally!

Hot cores

(in the perspective of understanding interstellar chemistry of COMs)

- hot core: early evolutionary stage during formation of a high-mass star, when protostar starts to heat up its envelope (promoting COM formation and desorption from grain surfaces), but before ionization sets in
- rare objects ⇒ distant ⇒ interferometry essential to probe individual protostellar objects and resolve their structure (envelope, outflows)

Hot cores

(in the perspective of understanding interstellar chemistry of COMs)

- hot core: early evolutionary stage during formation of a high-mass star, when protostar starts to heat up its envelope (promoting COM formation and desorption from grain surfaces), but before ionization sets in
- rare objects ⇒ distant ⇒ interferometry essential to probe individual protostellar objects and resolve their structure (envelope, outflows)

Despite their scarcity and large distance:

- ► high column densities of hot cores ⇒ key advantage for COM detection
- most COMs first detected in hot cores, mainly Sgr B2 and Orion KL
- large number of COMs detected in hot cores

Hot cores

(in the perspective of understanding interstellar chemistry of COMs)

- hot core: early evolutionary stage during formation of a high-mass star, when protostar starts to heat up its envelope (promoting COM formation and desorption from grain surfaces), but before ionization sets in
- rare objects ⇒ distant ⇒ interferometry essential to probe individual protostellar objects and resolve their structure (envelope, outflows)

Despite their scarcity and large distance:

- ► high column densities of hot cores ⇒ key advantage for COM detection
- most COMs first detected in hot cores, mainly Sgr B2 and Orion KL
- large number of COMs detected in hot cores

⇒ hot cores excellent targets to test chemical models

Chemistry in hot cores (and corinos)

Three-phase scenario: (Herbst & van Dishoeck 2009)

 zeroth-generation species: COMs formed in gas phase or on grain surfaces during cold prestellar phase
 Example: methanol CH₃OH, by surface hydrogenation of carbon monoxide CO

Chemistry in hot cores (and corinos)

Three-phase scenario: (Herbst & van Dishoeck 2009)

- zeroth-generation species: COMs formed in gas phase or on grain surfaces during cold prestellar phase
 Example: methanol CH₃OH, by surface hydrogenation of carbon monoxide CO
- first-generation species: COMs formed in/on grain mantles during warm-up period after birth of protostar (from radicals produced by photodissociation of zeroth-generation species)
 Example: methyl formate CH₃OCHO

Chemistry in hot cores (and corinos)

Three-phase scenario: (Herbst & van Dishoeck 2009)

- zeroth-generation species: COMs formed in gas phase or on grain surfaces during cold prestellar phase
 Example: methanol CH₃OH, by surface hydrogenation of carbon monoxide CO
- first-generation species: COMs formed in/on grain mantles during warm-up period after birth of protostar (from radicals produced by photodissociation of zeroth-generation species)
 Example: methyl formate CH₃OCHO
- second-generation species: COMs formed in gas phase after sublimation of grain mantles

Search for interstellar COMs: line surveys!

|▲□▶▲□▶▲三▶▲三▶ 三三 のへ⊙

(日) (字) (日) (日) (日)

The need for interferometric line surveys

COMs in hot cores:

emit hundreds of (weak) rotational lines

(日) (字) (日) (日) (日)

The need for interferometric line surveys

COMs in hot cores:

- emit hundreds of (weak) rotational lines
- sources containing many COMs have very dense (sub)mm spectra
 many lines are blended (confusion limit can be reached)

The need for interferometric line surveys

COMs in hot cores:

- emit hundreds of (weak) rotational lines
- sources containing many COMs have very dense (sub)mm spectra
 many lines are blended (confusion limit can be reached)

Secure identification of a COM requires: (see, e.g., Snyder+ 2005, Halfen+ 2006)

- ► identification of a large number of lines ⇒ large frequency coverage
- ▶ no missing line ⇒ unbiased survey
- ► consistent relative line intensities ⇒ radiative transfer modeling
- ▶ no conflict with other molecules ⇒ model emission of all molecules
- ▶ all lines of a molecule should peak at the same position ⇒ interferometry

The need for interferometric line surveys

COMs in hot cores:

- emit hundreds of (weak) rotational lines
- sources containing many COMs have very dense (sub)mm spectra
 many lines are blended (confusion limit can be reached)

Secure identification of a COM requires: (see, e.g., Snyder+ 2005, Halfen+ 2006)

- ► identification of a large number of lines ⇒ large frequency coverage
- ▶ no missing line ⇒ unbiased survey
- ► consistent relative line intensities ⇒ radiative transfer modeling
- ► no conflict with other molecules ⇒ model emission of all molecules
- ▶ all lines of a molecule should peak at the same position ⇒ interferometry

Advent of broadband backends at (sub)mm interferometers (8 GHz@ALMA + soon 16 GHz@NOEMA) ⇒ efficient line surveys at high angular resolution!

(日) (字) (日) (日) (日)

ALMA: sensitivity and resolution!

ALMA: sensitivity and resolution!

Line survey of Sgr B2(N) with ALMA (EMoCA, Belloche+ 2014)

・ロト ・ 同ト ・ ヨト ・ ヨ

ALMA: sensitivity and resolution!

(EMoCA, Belloche+ 2014)

・ロト ・ 同ト ・ ヨト ・ ヨト

11/23

Modeling of spectral line surveys

Assumptions:

Collision rates missing for many COMs ⇒ LTE often remains unique solution (but see, e.g., Faure+ 2014 for non-LTE analysis of methyl formate CH₃OCHO, Crockett+ 2014 for methyl cyanide CH₃CN)

イロト イロト イヨト イヨト 一旦 - のくで

Modeling of spectral line surveys

Assumptions:

- Collision rates missing for many COMs ⇒ LTE often remains unique solution (but see, e.g., Faure+ 2014 for non-LTE analysis of methyl formate CH₃OCHO, Crockett+ 2014 for methyl cyanide CH₃CN)
- ▶ hot cores: high densities ⇒ LTE excellent approximation in hot cores (e.g., Sgr B2(N): > 10⁸ cm⁻³ within ~ 1", i.e. 8300 AU)

Modeling of spectral line surveys

Assumptions:

- Collision rates missing for many COMs ⇒ LTE often remains unique solution (but see, e.g., Faure+ 2014 for non-LTE analysis of methyl formate CH₃OCHO, Crockett+ 2014 for methyl cyanide CH₃CN)
- ▶ hot cores: high densities ⇒ LTE excellent approximation in hot cores (e.g., Sgr B2(N): > 10⁸ cm⁻³ within ~ 1", i.e. 8300 AU)

Modeling tools:

- spectroscopic databases: mainly CDMS and JPL, + other contributions from lab spectroscopists
- predictions for isotopologues and vibrationally excited states of known COMs essential to perform line identification and prevent misassignments
- radiative transfer codes to model emission of each COM: e.g., XCLASS (Schilke+), Weeds (Maret+ 2011), CASSIS (Caux+), MADEX (Cernicharo+)

COMs in hot cores

13/23

COMs in hot cores

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

COMs tracing different "temperature" regimes

JCMT/IRAM 30 m survey of COMs toward 7 hot cores: (Bisschop+ 2007)

- COMs classified as either "cold" (T_{rot} < 100 K) or "hot" (> 100 K)
 - ⇒ two distinct regions (N-containing COMs only in "hot" region)
- "hot" species: high abundances, similar T_{rot} , correlations between COMs \Rightarrow common solid state formation scheme

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

COMs tracing different "temperature" regimes

But some of the "hot" species do also exist in colder regions:

- NH₂CHO and CH₃C(O)NH₂ in Sgr B2(N) with ARO 12 m and SMT (Halfen+ 2011):
 - both molecules trace two "temperature" components
 - see also GBT detections of COMs in Sgr B2 with low T_{rot} (Hollis+ 2004, Remijan+ 2008, Zaleski+ 2013, Loomis+ 2013)

◆□▶ ◆□▶ ▲目▶ ▲目▶ □ ● ●
COMs tracing different "temperature" regimes

But some of the "hot" species do also exist in colder regions:

- NH₂CHO and CH₃C(O)NH₂ in Sgr B2(N) with ARO 12 m and SMT (Halfen+ 2011):
 - both molecules trace two "temperature" components
 - see also GBT detections of COMs in Sgr B2 with low T_{rot} (Hollis+ 2004, Remijan+ 2008, Zaleski+ 2013, Loomis+ 2013)
- significant contribution of colder, extended envelope for HNCO and CH₃OH in "line-poor" massive YSOs (Fayolle+ 2015)

Chemical differentiation in Orion-KL

N- and O-bearing COMs at different locations (Blake+ 1987): different thermal history (Caselli+ 1993)? different grain mantle composition (Charnley+ 1992)?

Orion KL, ALMA-SV (Crockett+ 2014)

Chemical differentiation in Orion-KL

N- and O-bearing COMs at different locations (Blake+ 1987): different thermal history (Caselli+ 1993)? different grain mantle composition (Charnley+ 1992)?

 acetone CH₃C(O)CH₃ distribution more related to N-bearing COMs (Peng+ 2013), same conclusion for ethanol C₂H₅OH (Feng+ 2015)

うして ふぼう ふほう ふほう ふしつ

Chemical differentiation in Orion-KL

N- and O-bearing COMs at different locations (Blake+ 1987): different thermal history (Caselli+ 1993)? different grain mantle composition (Charnley+ 1992)?

- acetone CH₃C(O)CH₃ distribution more related to N-bearing COMs (Peng+ 2013), same conclusion for ethanol C₂H₅OH (Feng+ 2015)
- Analysis of Herschel/HIFI line survey based on velocity components (HEXOS, Crockett+ 2014): additional component, hot core (S), with O-bearing species

Chemical differentiation in other hot cores

 single-dish attempt to probe N/O differentiation in 12 other hot cores inconclusive due to lack of angular resolution (Fontani+ 2007)

Chemical differentiation in other hot cores

- single-dish attempt to probe N/O differentiation in 12 other hot cores inconclusive due to lack of angular resolution (Fontani+ 2007)
- interferometry: N/O chemical differentiation reported in W3 (Wyrowski+ 1999), W75N (Remijan+ 2004), G34.26+0.15 (Mookerjea+ 2007), Sgr B2(N) (Belloche+ 2008), NGC 6334I (Zernickel+ 2012)

Sgr B2(N), PdBI (Belloche+ 2008)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

Chemical differentiation in other hot cores

- single-dish attempt to probe N/O differentiation in 12 other hot cores inconclusive due to lack of angular resolution (Fontani+ 2007)
- interferometry: N/O chemical differentiation reported in W3 (Wyrowski+ 1999), W75N (Remijan+ 2004), G34.26+0.15 (Mookerjea+ 2007), Sgr B2(N) (Belloche+ 2008), NGC 6334I (Zernickel+ 2012)

Sgr B2(N), PdBI (Belloche+ 2008)

 $\Rightarrow~$ detailed understanding of N/O chemical differentiation will benefit a lot from ALMA

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

Constraints on chemistry from series of COMs

Series of alkyl cyanides in Sgr B2(N): (Belloche+ 2009)

▶ detection of normal-propyl cyanide n-C₃H₇CN toward Sgr B2(N) with IRAM 30 m telescope ⇒ column density ratios CH₃CN/C₂H₅CN/C₃H₇CN = 108/80/1

Constraints on chemistry from series of COMs

Series of alkyl cyanides in Sgr B2(N): (Belloche+ 2009)

▶ detection of normal-propyl cyanide n-C₃H₇CN toward Sgr B2(N) with IRAM 30 m telescope ⇒ column density ratios CH₃CN/C₂H₅CN/C₃H₇CN = 108/80/1

Comparison to R. Garrod's hot core model ⇒ production of alkyl cyanides by functional-group addition much more efficient than hydrogenation of less saturated species

(日) (字) (日) (日) (日)

Constraints on chemistry from series of COMs

Series of alkyl cyanides in Sgr B2(N): (Belloche+ 2009)

▶ detection of normal-propyl cyanide n-C₃H₇CN toward Sgr B2(N) with IRAM 30 m telescope ⇒ column density ratios CH₃CN/C₂H₅CN/C₃H₇CN = 108/80/1

Comparison to R. Garrod's hot core model ⇒ production of alkyl cyanides by functional-group addition much more efficient than hydrogenation of less saturated species

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

⇒ expanding COM series sets constraints on their formation process

 iso-propyl cyanide i-C₃H₇CN detected with ALMA toward Sgr B2(N) (EMoCA survey, Belloche+ 2014)

 iso-propyl cyanide i-C₃H₇CN detected with ALMA toward Sgr B2(N) (EMoCA survey, Belloche+ 2014)

- nearly as abundant as n-C₃H₇CN
- [*i*-C₃H₇CN]/[*n*-C₃H₇CN] well reproduced by hot-core chemical model of R. Garrod (First inclusion of branched alkyl molecules in a chemical network!)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

 iso-propyl cyanide i-C₃H₇CN detected with ALMA toward Sgr B2(N) (EMoCA survey, Belloche+ 2014)

- nearly as abundant as n-C₃H₇CN
- [*i*-C₃H₇CN]/[*n*-C₃H₇CN] well reproduced by hot-core chemical model of R. Garrod (First inclusion of branched alkyl molecules in a chemical network!)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

Both molecules formed on grain surfaces but via different formation routes:

 dominant route for n-C₃H₇CN: CH₃ĊH₂ + ĊH₂CN (no equivalent reaction for production of *i*-C₃H₇CN)

 iso-propyl cyanide i-C₃H₇CN detected with ALMA toward Sgr B2(N) (EMoCA survey, Belloche+ 2014)

- nearly as abundant as n-C₃H₇CN
- [*i*-C₃H₇CN]/[*n*-C₃H₇CN] well reproduced by hot-core chemical model of R. Garrod (First inclusion of branched alkyl molecules in a chemical network!)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

Both molecules formed on grain surfaces but via different formation routes:

- dominant route for n-C₃H₇CN: CH₃ĊH₂ + ĊH₂CN (no equivalent reaction for production of *i*-C₃H₇CN)
- dominant route for *i*-C₃H₇CN: ĊN + CH₃ĊHCH₃
 (addition of H to propene CH₂=CHCH₃ strongly favors CH₃ĊHCH₃ over ĊH₂CH₂CH₃, Curran 2006)

detection of *i*-C₃H₇CN opens **a new domain** in the structures available to the chemistry of star forming regions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- detection of *i*-C₃H₇CN opens **a new domain** in the structures available to the chemistry of star forming regions
- production of secondary radical sites inherently favored over primary ones
 ⇒ branched isomers of molecules with sufficient complexity may
 dominate in star-forming regions!

- detection of *i*-C₃H₇CN opens **a new domain** in the structures available to the chemistry of star forming regions
- production of secondary radical sites inherently favored over primary ones
 ⇒ branched isomers of molecules with sufficient complexity may
 dominate in star-forming regions!
- amino acids in meteorites: branched isomers even dominate over straight-chain ones (e.g., Cronin & Pizzarello 1983)
 - \Rightarrow detection of $\it i\text{-}C_3H_7CN$ establishes further link between meteorites and interstellar chemistry

- detection of *i*-C₃H₇CN opens **a new domain** in the structures available to the chemistry of star forming regions
- production of secondary radical sites inherently favored over primary ones
 ⇒ branched isomers of molecules with sufficient complexity may
 dominate in star-forming regions!
- amino acids in meteorites: branched isomers even dominate over straight-chain ones (e.g., Cronin & Pizzarello 1983)

 \Rightarrow detection of $\it i\text{-}C_3H_7CN$ establishes further link between meteorites and interstellar chemistry

• α -amino acids have a branched heavy-atom backbone:

 \Rightarrow detection of *i*-C₃H₇CN **bodes well for presence of amino acids** in the ISM!

н₂n-соон

21 / 23

Outlook

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

▶ branched molecules: do branched isomers of more complex molecules dominate over straight-chain one? ⇒ obs. test: butyl cyanide (C₄H₉CN) (on-going laboratory spectroscopy in Cologne, on-going chemical modeling by R. Garrod, project proposed for ALMA Cycle 3)

- ▶ branched molecules: do branched isomers of more complex molecules dominate over straight-chain one? ⇒ obs. test: butyl cyanide (C₄H₉CN) (on-going laboratory spectroscopy in Cologne, on-going chemical modeling by R. Garrod, project proposed for ALMA Cycle 3)
- ► ALMA: broad bandwidth, high sensitivity, high angular resolution, excellent data quality ⇒ perfect machine to test predictions of chemical models:
 - search for new COMs in the ISM (branched molecules? chiral molecules? glycine?), in particular expand series of COMs
 - map chemical differentiation in large sample of hot cores
 - ALMA+ACA ideal to map radial distribution of COM emission

- ▶ branched molecules: do branched isomers of more complex molecules dominate over straight-chain one? ⇒ obs. test: butyl cyanide (C₄H₉CN) (on-going laboratory spectroscopy in Cologne, on-going chemical modeling by R. Garrod, project proposed for ALMA Cycle 3)
- ► ALMA: broad bandwidth, high sensitivity, high angular resolution, excellent data quality ⇒ perfect machine to test predictions of chemical models:
 - search for new COMs in the ISM (branched molecules? chiral molecules? glycine?), in particular expand series of COMs
 - map chemical differentiation in large sample of hot cores
 - ALMA+ACA ideal to map radial distribution of COM emission
- ► NOEMA: survey mode: 250 kHz channels over 16 GHz bandwidth ⇒ excellent line survey machine for northern sources!

(+ band 1 down to 72 GHz? \Rightarrow lower line confusion!)

- ▶ branched molecules: do branched isomers of more complex molecules dominate over straight-chain one? ⇒ obs. test: butyl cyanide (C₄H₉CN) (on-going laboratory spectroscopy in Cologne, on-going chemical modeling by R. Garrod, project proposed for ALMA Cycle 3)
- ► ALMA: broad bandwidth, high sensitivity, high angular resolution, excellent data quality ⇒ perfect machine to test predictions of chemical models:
 - search for new COMs in the ISM (branched molecules? chiral molecules? glycine?), in particular expand series of COMs
 - map chemical differentiation in large sample of hot cores
 - ALMA+ACA ideal to map radial distribution of COM emission
- ► NOEMA: survey mode: 250 kHz channels over 16 GHz bandwidth ⇒ excellent line survey machine for northern sources!

(+ band 1 down to 72 GHz? \Rightarrow lower line confusion!)

one (of many) challenge(s): accurate spectroscopic predictions needed!
 Example: ethanol C₂H₅OH

ALMA helps improving spectroscopic predictions!

LTE model with official JPL entry of ethanol on top of ALMA Sgr B2(N) spectrum:

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

ALMA helps improving spectroscopic predictions!

LTE model with official JPL entry of ethanol on top of ALMA Sgr B2(N) spectrum:

New predictions with gauche a-dipole components turned positive:

⁽H. Müller, priv. comm.)

