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Messengers of interstellar chemistry

Meteorites and comets

» more than 80 amino acids found in meteorites on Earth, with isotopic
composition and racemic distribution suggesting extraterrestrial origin
(e.g., Botta & Bada 2002)

» glycine (NH.CH,COOH) detected in samples returned from comet 81P/Wild 2
by Stardust mission (Elsila+ 2009)

Basic questions

» are meteoritic amino acids and cometary glycine pristine interstellar
molecules? Did the ISM contribute to seeding life on Earth?

» are such molecules widespread in the Galaxy?

» what is the degree of chemical complexity in the ISM?
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Molecules in the interstellar medium
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» about 190 molecules detected in the ISM
3 or in circumstellar envelopes
: over 8 decades (1937-2015)
(only 3 before 1963)
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Number of molecules

» on average since 1963 (radioastronomy),
B0 oo >13 about 7 new molecules every 2 years

Number of constituent atoms

(http://www.cdms.de/) » 13 new detections in 2013-2015

» complex molecules (for astronomers): > 6 atoms (Herbst & van Dishoeck 2009)
» one third of detected molecules are complex

» all detected complex molecules are organic (COMs)

= how do COMs form in the interstellar medium?
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Processes building up chemical complexity in the ISM

» gas phase chemistry: mainly driven by ions, cannot explain abundances of
all COMs

» grain surface chemistry: mainly driven by radicals produced by energetic
photons or cosmic-rays

» hot-core models: warm-up phase increases mobility of radicals and
promotes their recombination to form COMs before desorption
(e.g. Garrod+ 2008)

» multi-layer (e.g. Taquet+ 2012, Vasyunin & Herbst 2013a, Garrod 2013)

» COMs in prestellar cores at low temperature (Oberg+ 2010, Bacmann+ 2012,
Cernicharo+ 2012):

» reactive desorption of COM precursors followed by radiative
association? (Vasyunin & Herbst 2013b)

> non-thermal desorption in core outer layers? (Vastel+ 2014, Bizzocchi+ 2014)
> revision/expansion of gas-phase reaction network? (Balucani+ 2015)

= predictions of chemical models need to be tested observationally!
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but before ionization sets in

> rare objects = distant = interferometry essential to probe individual
protostellar objects and resolve their structure (envelope, outflows)
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Hot cores

(in the perspective of understanding interstellar chemistry of COMSs)

» hot core: early evolutionary stage during formation of a high-mass star,
when protostar starts to heat up its envelope
(promoting COM formation and desorption from grain surfaces),
but before ionization sets in

> rare objects = distant = interferometry essential to probe individual
protostellar objects and resolve their structure (envelope, outflows)

Despite their scarcity and large distance:
» high column densities of hot cores = key advantage for COM detection
» most COMs first detected in hot cores, mainly Sgr B2 and Orion KL

» large number of COMs detected in hot cores

= hot cores excellent targets to test chemical models
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Chemistry in hot cores (and corinos)

Three-phase scenario: (Herbst & van Dishoeck 2009)

» zeroth-generation species: COMs formed in gas phase or on grain surfaces
during cold prestellar phase
Example: methanol CH3OH, by surface hydrogenation of carbon monoxide CO

» first-generation species: COMs formed in/on grain mantles during warm-up
period after birth of protostar
(from radicals produced by photodissociation of zeroth-generation species)
Example: methyl formate CH3OCHO

» second-generation species: COMs formed in gas phase after sublimation of
grain mantles
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The need for interferometric line surveys
COM s in hot cores:
» emit hundreds of (weak) rotational lines
» sources containing many COMs have very dense (sub)mm spectra
= many lines are blended (confusion limit can be reached)
Secure identification of a COM requires: (see, e.g., Snyder+ 2005, Halfen+ 2006)
» identification of a large number of lines = large frequency coverage
» no missing line = unbiased survey
» consistent relative line intensities = radiative transfer modeling
» no conflict with other molecules = model emission of all molecules
» all lines of a molecule should peak at the same position = interferometry

Advent of broadband backends at (sub)mm interferometers (8 GHz@ALMA
+ soon 16 GHz@NOEMA) = efficient line surveys at high angular resolution!
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ALMA: sensitivity and resolution!
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ALMA: sensitivity and resolution!
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Modeling of spectral line surveys

Assumptions:

» collision rates missing for many COMs = LTE often remains unique solution

(but see, e.g., Faure+ 2014 for non-LTE analysis of methyl formate cHzocHO,
Crockett+ 2014 for methyl cyanide CH;CN)

» hot cores: high densities = LTE excellent approximation in hot cores
(e.g., Sgr B2(N): > 108 cm~3 within ~ 1”7, i.e. 8300 AU)
Modeling tools:

» spectroscopic databases: mainly CDMS and JPL, + other contributions from
lab spectroscopists

» predictions for isotopologues and vibrationally excited states of known
COMs essential to perform line identification and prevent misassignments

» radiative transfer codes to model emission of each COM: e.g.,
XCLASS (Schilke+), Weeds (Maret+ 2011), CASSIS (Caux+), MADEX (Cernicharo+)
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COMs tracing different “temperature” regimes
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“Cold” species

JCMT/IRAM 30 m survey of COMs toward 7 hot cores:  (Bisschop+ 2007)
» COMs classified as either “cold” (T, < 100 K) or “hot” (> 100 K)
= two distinct regions (N-containing COMs only in “hot” region)
> “hot” species: high abundances, similar T, correlations between COMs

= common solid state formation scheme
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COMs tracing different “temperature” regimes

But some of the “hot” species do also exist in colder regions:

Rotational Temperature Diagram for Formamide 1 Rotational Temperature Diagram for Acetamide

log (BKW/S=vSy)

> NHCHO and CH3C(O)NH, in Sgr B2(N) with ARO 12 m and SMT (Halfen+ 2011):

» both molecules trace two “temperature” components

» see also GBT detections of COMs in Sgr B2 with low T,
(Hollis+ 2004, Remijan+ 2008, Zaleski+ 2013, Loomis+ 2013)
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COMs tracing different “temperature” regimes

But some of the “hot” species do also exist in colder regions:

Rotational Temperature Diagram for Formamide 1 Rotational Temperature Diagram for Acetamide

log (BKW/S=vSy)

> NHCHO and CH3C(O)NH, in Sgr B2(N) with ARO 12 m and SMT (Halfen+ 2011):

» both molecules trace two “temperature” components

» see also GBT detections of COMs in Sgr B2 with low T,
(Hollis+ 2004, Remijan+ 2008, Zaleski+ 2013, Loomis+ 2013)

» significant contribution of colder, extended envelope for HNCO and CH3OH in
“line-poor” massive YSOs (Fayolle+ 2015)
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(Peng+ 2013), same conclusion for ethanol C,HsOH (Feng+ 2015)
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Chemical differentiation in Orion-KL

» N- and O-bearing COMs at different locations (Blake+ 1987): different thermal
history (Caselli+ 1993)? different grain mantle composition (Charnley+ 1992)?
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log(N(x)/N(Hp)) in Orion KL (Crockett+ 2014)

» acetone CH3C(O)CH;z distribution more related to N-bearing COMs
(Peng+ 2013), same conclusion for ethanol C,HsOH (Feng+ 2015)

» Analysis of Herschel/HIFI line survey based on velocity components (HEXOS,
Crockett+ 2014): additional component, hot core (S), with O-bearing species
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Chemical differentiation in other hot cores

» single-dish attempt to probe N/O differentiation in 12 other hot cores
inconclusive due to lack of angular resolution (Fontani+ 2007)

» interferometry: N/O chemical differentiation reported in
W3 (Wyrowski+ 1999), W75N (Remijan+ 2004),
G34.26+0.15 (Mookerjea+ 2007), Sgr B2(N) (Belloche+ 2008),
NGC 6334 (Zernickel+ 2012)

10 T T TR T
9 5F \ + \ E + ‘ El
0 £ 1 1 ]
2 oE +X 1E El =
A 1EF 1EF 3]
5 sk 1F 9
CoHsCN HV 3] F CoH,CNLV 3 [ CH30CHO
=10 Bt el Bt b el B b il o

10 5 0 -5 -10
Ao (arcsec)

Sgr B2(N), PdBI (Belloche+ 2008)



COM s in hot cores Chemical differentiation 17/23

Chemical differentiation in other hot cores

» single-dish attempt to probe N/O differentiation in 12 other hot cores
inconclusive due to lack of angular resolution (Fontani+ 2007)

» interferometry: N/O chemical differentiation reported in
W3 (Wyrowski+ 1999), W75N (Remijan+ 2004),
G34.26+0.15 (Mookerjea+ 2007), Sgr B2(N) (Belloche+ 2008),
NGC 6334 (Zernickel+ 2012)
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= detailed understanding of N/O chemical differentiation will benefit
a lot from ALMA
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Constraints on chemistry from series of COMs

Series of alkyl cyanides in Sgr B2(N): (Belloche+ 2009)

» detection of normal-propyl cyanide n-C3H;CN toward Sgr B2(N) with IRAM
30 m telescope = column density ratios CH3CN/C2HsCN/C3H,CN = 108/80/1
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» comparison to R. Garrod’s hot core model
= production of alkyl cyanides by
functional-group addition much more
efficient than hydrogenation of less
saturated species

log[n(i)/ny]

= expanding COM series sets constraints on their formation process
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First detection of a branched alkyl molecule

iso-propyl cyanide i-C3H;CN detected with ALMA toward Sgr B2(N)
(EMoCA survey, Belloche+ 2014)
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First detection of a branched alkyl molecule

> iso-propyl cyanide i-C3H,CN detected with ALMA toward Sgr B2(N)
(EMoCA survey, Belloche+ 2014)
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Both molecules formed on grain surfaces but via different formation routes:

» dominant route for n-C3H;CN:  CH3CHz + CH,CN
(no equivalent reaction for production of i-C3H;CN)
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First detection of a branched alkyl molecule

> iso-propyl cyanide i-C3H,CN detected with ALMA toward Sgr B2(N)
(EMoCA survey, Belloche+ 2014)
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» nearly as abundant as n-C3zH;CN

log[n(i)/n(Hy)]

> [i-C3H7CNJ}/[n-C3H,CN] well reproduced by
hot-core chemical model of R. Garrod
(First inclusion of branched alkyl molecules in a

sx1a* 1x10° 2x10°  2.85x10°

chemical network!) Time ()

Both molecules formed on grain surfaces but via different formation routes:

» dominant route for n-C3H;CN:  CH3CHz + CH,CN
(no equivalent reaction for production of i-C3H;CN)

» dominant route for i-C3H;CN:  CN + CH3CHCH3
(addition of H to propene CH,=CHCH3 strongly favors CH3CHCHs over CHpCHoCHg, Curran 2006)
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Branched molecules in the ISM

» detection of i-C3H;CN opens a hew domain in the structures available to the
chemistry of star forming regions
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dominate in star-forming regions!
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dominate in star-forming regions!

» amino acids in meteorites: branched isomers even dominate over
straight-chain ones (e.g., Cronin & Pizzarello 1983)

= detection of i-C3H;CN establishes further link between meteorites and
interstellar chemistry
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Branched molecules in the ISM

detection of i-C3H;CN opens a hew domain in the structures available to the
chemistry of star forming regions

production of secondary radical sites inherently favored over primary ones
= branched isomers of molecules with sufficient complexity may
dominate in star-forming regions!

amino acids in meteorites: branched isomers even dominate over
straight-chain ones (e.g., Cronin & Pizzarello 1983)

= detection of i-C3H;CN establishes further link between meteorites and
interstellar chemistry

R
a-amino acids have a branched heavy-atom backbone: HzN*E*COOH

= detection of i-C3H;CN bodes well for presence of amino acids
in the ISM!
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Outlook

» branched molecules: do branched isomers of more complex molecules
dominate over straight-chain one? = obs. test: butyl cyanide (C,HsCN)
(on-going laboratory spectroscopy in Cologne, on-going chemical modeling by R. Garrod,
project proposed for ALMA Cycle 3)
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Outlook
» branched molecules: do branched isomers of more complex molecules
dominate over straight-chain one? = obs. test: butyl cyanide (C,HsCN)
(on-going laboratory spectroscopy in Cologne, on-going chemical modeling by R. Garrod,

project proposed for ALMA Cycle 3)

» ALMA: broad bandwidth, high sensitivity, high angular resolution, excellent
data quality = perfect machine to test predictions of chemical models:

» search for new COMs in the ISM (branched molecules? chiral molecules?
glycine?), in particular expand series of COMs

» map chemical differentiation in large sample of hot cores

» ALMA+ACA ideal to map radial distribution of COM emission
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Outlook
» branched molecules: do branched isomers of more complex molecules
dominate over straight-chain one? = obs. test: butyl cyanide (C,HsCN)
(on-going laboratory spectroscopy in Cologne, on-going chemical modeling by R. Garrod,

project proposed for ALMA Cycle 3)

» ALMA: broad bandwidth, high sensitivity, high angular resolution, excellent
data quality = perfect machine to test predictions of chemical models:

» search for new COMs in the ISM (branched molecules? chiral molecules?
glycine?), in particular expand series of COMs

» map chemical differentiation in large sample of hot cores

» ALMA+ACA ideal to map radial distribution of COM emission

» NOEMA: survey mode: 250 kHz channels over 16 GHz bandwidth =
excellent line survey machine for northern sources!

(+ band 1 down to 72 GHz? = lower line confusion!)
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Outlook
branched molecules: do branched isomers of more complex molecules
dominate over straight-chain one? = obs. test: butyl cyanide (C,HsCN)
(on-going laboratory spectroscopy in Cologne, on-going chemical modeling by R. Garrod,

project proposed for ALMA Cycle 3)

ALMA: broad bandwidth, high sensitivity, high angular resolution, excellent
data quality = perfect machine to test predictions of chemical models:

» search for new COMs in the ISM (branched molecules? chiral molecules?
glycine?), in particular expand series of COMs

» map chemical differentiation in large sample of hot cores

» ALMA+ACA ideal to map radial distribution of COM emission

NOEMA: survey mode: 250 kHz channels over 16 GHz bandwidth =
excellent line survey machine for northern sources!

(+ band 1 down to 72 GHz? = lower line confusion!)
one (of many) challenge(s): accurate spectroscopic predictions needed!
Example: ethanol C,HsOH
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ALMA helps improving spectroscopic predictions!

LTE model with official JPL entry of ethanol on top of ALMA Sgr B2(N) spectrum:
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ALMA helps improving spectroscopic predictions!

LTE model with official JPL entry of ethanol on top of ALMA Sgr B2(N) spectrum:

15 -
ok C;H,0H JPL

5 A &.&J{LM\&
a

36580 Boiio (40) 50350 40) 51080 (40) 53650 (40)
30 b
20 b
3 L,/\_/\*I\QQAJ\ :AMALM&A&
0

9753 40 85053 (40) 100974 40) 101540 (40) 101350 (40)

New predictions with gauche a-dipole components turned positive:
(H. Muller, priv. comm.)
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