

Herschel / PACS view of feedback from deeply-embedded low-mass protostars

Agata Karska

Adam Mickiewicz University in Poznań, Poland

WISH

"Water in star forming regions with Herschel" PI: Ewine van Dishoeck; 70+ scientists from 30 institutes

"Dust, Ice, and Gas in Time"

PI: Neal Evans

"Water in low-mass protostars: the William Herschel Line Legacy" **PI: Ewine van Dishoeck**

Importance of feedback

Better understanding of feedback in *individual protostars* key to connect the theory with observations

Disk and jets in HH30

C. Burrows

Hubble/WFPN

In deeply-embedded sources extinction due to envelope / cloud too high to see the jets

Deeply-embedded protostars

Feedback most important during deeply embedded stage, when accretion rate is the largest

Physical structure of Class O/I

- Natal core
- Envelope
- Protostar
- Bipolar outflow
- (Hidden) jet

Processes leading to gas heating?

Main cooling channels?

Main cooling channels

Dust

- absorbs UV, re-emits far-IR radiation
- excellent tracer of envelope properties

Molecules and atoms - in physical regimes of Class O/I protostars: Goldsmith & Langer+78, Neufeld & Kaufman+93, Giannini+01, Nisini+02 H₂O OH

Gas cooling via far-infrared lines of H₂O, CO, OH - unique tracers of heating processes (=feedback), key for simulations and star formation efficiency

Cooling by H2O

- Forms efficiently in high-T reactions and on the grains T> 300 K: $O + H_2 \longrightarrow OH + H$ $OH + H_2 \longrightarrow H_2O + H$ molecules released from grains

- Asymmetric rotor with many energy levels + large radiative rates

Possible key gas coolant, "switches on" when feedback at play

Cooling by CO

- Second most abundant molecule in the interstellar medium after H₂

- Level energies closely spaced, scale as $\propto J(J+I)$
- Collisionally excited even at low *T*, good diagnostic of gas kinetic temperature
- Up to recently, CO I-0, 2-1 and 3-2 accessible

Important coolant and tracer of physical conditions

Far-IR observatories

- ISO / LWS: ~45-200 μm

- R~200 (R~10,000 for bright lines)
- large beam of 80"

ISO (60cm) 1995-1998

- Herschel / PACS: ~55-200 μm
- R~1000-5500
- FOV ~50"x50" resolved into ~10" px

Herschel (3.5 m) 2009-2013

Envelope heating by protostar

Fig. R.Visser

Envelope Probed by C¹⁸O Narrow Component T < 200 K - Accretion luminosity dominates the protostellar luminosity

- Only inner envelope is hot, the rest quickly cooled by dust (far-IR continuum)

- Gas heated by gas-dust collisions

Recent models: hot cores only few % of observed line cooling

Visser+12

Envelope is a minor contributor of hot gas

Ultraviolet heating

- UV from the vicinity of a protostar and dissociative shocks in the jet

Yildiz+2012, 2015

UV heated cavity walls a likely source of $T\sim50$ K gas

Shocks in outflow cavities / jets

Fig. R.Visser

- Large-scale shocks produced by jets / winds impacting the envelope of two types: Draine 80 Hollenbach 97

Shocks are efficient factories of hot molecular gas

Entrained outflow gas

Envelope material incorporated and swept along the outflow

Best traced by high velocity resolution CO lines

Temperatures of < 100 K

Equally important as UV heating for less energetic transitions

Yildiz+12

Emits in cold molecular gas - small contribution to far-IR lines

WISH, DIGIT, and WILL programs

Prestellar

Class 0

Class I

Disks

Time

~|-|0

Low-

~|0²-|0³

~80 sources

Intermediate-

 $\sim 10^4 - 10^5 L_{\odot}$

Mass

High-mass

Fig. by L. Kristensen

Maps of far-IR emission

- Well-resolved extended molecular emission along the outflow direction

- Detected in ~10% of sources, esp. Class 0

Compact and rich line emission in CO, H₂O, OH, very highly-excited lines detected

CO rotational diagrams

Herczeg+2012, Green+13, Karska+13, Goicoechea+2012

- Universal warm CO component T~ 300 K
- Differences in hot CO T need for larger source sample

Gas physical conditions

Radiative transfer model predictions give a range of temperatures and densities:

see also Neufeld 12

Karska+2013

Observations reproduced with densities $n > 10^5$ cm⁻³ and T > 300 K, or: lower densities (n~10³⁻⁴ cm⁻³) and much higher T (> 1000 K)

Comparison to shock models

Karska+2013

Kaufman & Neufeld 96 models

shock velocity

Comparison to C-type shock models favors high pre-shock densities (10^4 - 10^5 cm⁻³) and thus $n > 10^5$ cm⁻³ & $T \sim$ few 100 K

Alternative approach

Neufeld+12, Manoj+13, Green+13

Single component fits require low-densities ($\leq 10^4$ cm⁻³) and very high temperatures $T \geq$ few 1000 K

Gas cooling budget

Total far-IR cooling dominated by CO and H₂O - shocks O increasing for more evolved sources - more UV heating

Shock models vs. observations

	H ₂ O	CO	ОН	method
Ser SMM3 (Dionatos+13)	C shock, v~30 km/s, n~10 ⁴ cm ⁻³	J shock, v~20 km/s, n~10 ⁴ cm ⁻³	C shock, v~30 km/s, n~10 ⁴ cm ⁻³	best fit to rotational diagrams
L1448-MM (Lee+13)	C shock, v n~10 ⁵	hock, v~40 km/s, n~10 ⁵ cm ⁻³		
L1448-R4 (Santangelo+12)	J shock, v~20 km/s, n~10 ⁵ cm ⁻³			HIFI line ratios
L1448-R4 (Santangelo+13)	C shock, v>20 km/s, n~10 ⁵ cm ⁻³			PACS line ratios
L1157 B1 (Benedettini+12)		dissoc. v>30 km/s v>20 km/s	J shock, n~10 ⁴ cm ⁻³ n~10 ⁵ cm ⁻³	OI fluxes, O/CO & OH/CO
L1157 B1 (Busquet+14)	non-dissoc. J shock	-		cooling in H ₂ O lines

Lack of agreement between various authors: different approaches and / or real differences between objects

More robust comparisons

Test case: 22 low-mass protostars

Perseus / NGC1333

Shock models:

non-dissociative C-type shock
 models from Kaufman & Neufeld 96

Karska+2014b

- non-dissociative C- and J-type shock models: Pineau des Forets & Flower 10

- extension of PdF&F to higher-J CO

Aim: test the observations of significant sample of sources against the shock models in a uniform way

Line ratios vs. shock models - excitation

Karska+14b

- Line ratios remarkably similar across the sample - Velocities > 20 km s⁻¹, pre-shock densities of ~10⁵ cm⁻³

Line ratios vs. shock models - abundances

Karska+14b

- Observed ratios with H₂O much lower than models

- Irradiated shock models - decrease in H₂O abundances

Survey: WISH+DIGIT+WILL

WILL survey:
additional 50
protostars

total of ~ 90 sources

full spectra for ~ 30 src (DIGIT/WISH)

- unbiased flux-limited survey of low-mass protostars - good sampling of L_{bol} - T_{bol} but cloud differences

Extent of emission

- much less common than in the WISH survey; mostly seen in Class 0

mostly Class I sources
seen together with hot CO
origin in outflow vs. disk

CO diagrams - update

T_{rot} vs. L_{bol}

N_{tot} ratios

CO rotational temperatures of ~ 700 ± 200 K (TBC)
20% of emitting molecules are hot

Origin of [OI] emission?

Karska,+ in prep.

Decrease of molecular emission with evolution
 BUT: integrated [OI] emission very similar for Class 0/I

Mass flux rates

[OI] assumed to trace dissociative shocks

[OI] mass flux rates are of order 10⁻⁸-10⁻⁶ M_{sun}/yr
possible evolution from molecular to atomic jet
[OI] not a good tracer of maximum flux rate (cf. Hollenbach 85)

Oxygen maps / PACS Nisini+15

- mass flux rate from shock models is reliable

- ejection-to-accretion rate of the order of 0.05-0.5

Shocks / absolute intensities

Karska,+ in prep.

- intensities of CO & H₂O governed by C-type shocks (not shown)

- J-type shocks needed to reproduce [OI]

- J-type shocks are not sufficient to reproduce [CII]

Need for additional UV!

Comparisons to PDR models

Karska, + in prep.

G_o=1.6 10⁻³ erg cm⁻² s⁻¹

- UV fields of ~10-100 G_o and densities n~10⁴-10⁵ cm⁻³ - low densities suggest the origin in outflow cavities

[OI]: disk vs. jet

Karska,+ in prep.

relations from Howard+2013

- Minor contribution of the disk to [OI] emission

Conclusions

 good statistics on hot CO, H₂O, extended emission but does not answer all questions

 first use of C+, comparisons to PDR models require understudying of the oxygen story

 part of O clearly traces hidden atomic jet but not all, evolution from molecular to atomic jet

- molecular cooling decreases with time, but not the O cooling

- we really need to treat UV+shocks together and not as separate phenomena