Legacy of Herschel: what we have learned about protoplanetary disks

Dmitry Semenov MPIA Heidelberg

(G. Meeus, W.-F. Thi, D. Fedele, J. Bouwman, M. H. D. van der Wiel)

Credit: ESO/L. Calçada

Outline

- Why disks are interesting?
- Herschel observatory
- Large programs
- Observational results & statistics
- Conclusions

Protoplanetary disks as birth sites of planets

- Strong gradients of physical conditions
- Grain evolution, planet-disk interactions, complex dynamics
- Rich chemistry

Thermochemical models of disk physics

T Tauri systems: $T_{eff} \sim 4000 \text{ K}$, $L_X \sim 10^{31} \text{ erg/s}$, UV (100 AU) $\sim 500 \text{ ISM UV}$

- Heating: dust, PAHs + gas (ro-)vib. absorption
- Cooling: dust + gas (ro-)vib. emission
- Gas-grain collisions: at $n_H > 10^6 \text{ cm}^{-3} T_{dust} = T_{gas}$

Kamp ++ 05; Woitke ++09; Jonkheid ++ 07; Gorti & Hollenbach 08; Nomura ++ 10; Aresu ++12; Bruderer ++ 12

Thermochemical models of disk physics

HAe systems: T_{eff} > 8000 K, L_X ~ 10³⁰ erg/s, UV (100 AU) > 10⁵ ISM UV

• Upper layers: $T_{gas} > T_{dust}$

• HAe disks are warmer than TTau disks: T > 20 - 25 K

Kamp ++ 05; Woitke ++09; Jonkheid ++ 07; Gorti & Hollenbach 08; Nomura ++ 10; Aresu ++12; Bruderer ++ 12

Herschel

- Cornerstone ESA mission (with NASA support)
- Large 3.5m mirror
- Cryogenically He-cooled, <2K
- 57–670 µm: imaging & spectroscopy
- Instruments:
- PACS (Photodetector Array Camera and Spectrometer)
- SPIRE (SPectral and Photometric Imaging REceiver)
- HIFI (Heterodyne Instrument for the Far-Infrared)

Disks are not spatially resolved

Probing distinct regions: multi-wavelength Radio approach Plateau de Bure interferometer **FIR** Herschel **NIR/MIR** Visual/NIR ESA **CII 158µm** Spitzer 🔊 Nell 12.8µm **OI** 63µm &145µm VLT HCN & C₂H₂ CO ~14µm CO CN ~2-5µm HCN Hα mm FIR H₂O Sfar 10 100 radius [AU] MIR H₂O **ALMA**

Large disk programs

- GAS in Protoplanetary Systems (GASPS; PI Bill Dent):
 - 400 h, 250 disks (PACS)
 - Dust, [CII] 157 μ m, [OI] 63 & 145 μ m, water 63.3 & 78 μ m, CO lines
- Disk Gas and Ice in Time (DIGIT: PI N. Evans):
 - 250 h, >30 disks (PACS)
 - Gas lines, dust and ice bands
- Water In Star-forming regions with Herschel (WISH; PI E. van Dishoeck):
 - >200 h, many Class 0–II sources
 - OH, H_2O , OH^+ , H_2O^+ , ...
 - Water in disks with HIFI (PI M. Hogerheijde)

Silicates in protoplanetary disks

HD179218

- Distinct features, lab. spectra available
- Crystalline and amorphous silicate features (also water)
- Difficulty in setting the continuum slope

J. Bouwman, priv.comm.

Silicates in protoplanetary disks

J. Bouwman, priv.comm.

Gas disk diagnostics with Herschel

Sturm, Bouwman, Henning et al. (2010; see also Thi et al. 2011)

Herschel PACS detection of HD in TW Hya

Bergin et al. (2013), Nature 493, 644

Direct probe of gas mass: HD I-0:T_{ex} > 20-25K HD/H₂ ~ $10^{-5} \Rightarrow M_{disk} > 0.05 M_{sun}$

However: ~20 h of integration time

GASPS: Line detection statistics

	[OI]63	[OI]145	[CII]157	H ₂ O 63	CO 18-17
Total	80/164	24/61	19/72	12/164	24/58
HAeBe stars ^a	20/25	5/23	6/25	2/25	10/24
T Tauri stars ^b	60/139	19/38	13/47	10/139	14/34

- [OI]@63 µm / [OI]@145 µm ~ 10 20
- [CII] line is weak, often spatially extended \Rightarrow

surrounding gas/outflows?

- Ortho-H₂O 8₁₇-7₀₇ at 63 μ m has E_{up} >1000 K \Rightarrow hot gas
- CO J=18-17 line \Rightarrow warm gas

Dent et al. (2013), see also Fedele et al. 2012 A&A 544, L9

GASPS: HAe disks at [OI] 63.2 µm

Cont. subtracted Flux (Jy)

- Variety of line fluxes
- Debris disks

are,,deserted"

Debris disks

GASPS: Trends with [OI] 63 µm

Dent et al. (2013), PASP, 125, 927, 477 • Higher warm dust mass \Rightarrow higher warm gas mass

GASPS:Trends with [OI] 63 µm

Dent et al. (2013), PASP, 125, 927, 477

• Higher cold gas mass \Rightarrow higher gas mass?

GASPS: Trends with [OI] 63 µm

Dent et al. (2013), PASP, 125, 927, 477

• Self-shadowed disks \Rightarrow only IS UV matters

GASPS: [OI] 63 µm vs X-ray luminosity

Aresu et al. (2011, 2012)

GASPS:Trends with [OI] 63 µm

Dent et al. (2013), PASP, 125, 927, 477

• Higher PAH abundance \Rightarrow more efficient gas heating

Sources with outflows

Transition disks with inner holes

GASPS: Disk diagnostics with CO lines

CO rotational diagrams

Some disks show two components: warm and hot CO gas

CO line modeling: HD 100546

CO J-line excitation in disks

• CO mid-J lines: E_{up} ~ 50-500 K

- ¹²CO traces surface
- ¹³CO traces deeper layers
- Evidence for selective

photodissociation

van der Wiel et al. (2014), model from Thi et al. (2011)

CO statistics

- CO mid- to high-J detections:
- Group I (flared disks): ~40% sources
- Group II (self-shadowed disks): 0 sources
- Sources with high-J CO detections have high UV fluxes and strong PAH bands
- CO J-lines and [OI]63 line fluxes tend to correlate
- Rotational diagram gives <Trot> = 271 +/- 39 K
- Highest CO-J line found in HD100546: a hot inner wall

WISH: Cold water vapor in TW Hya

- Herschel/HIFI, ortho- and para-water • o/p ratio ~ $0.8 \Rightarrow H_2O$ formed on 20 grains at 10–15 K 0 • Origin: photodesorption of water ice (mK) Tmb 20 Observations are reproduced when: - large, icy grains have settled
 - large, ley grains have settled
 - icy grains have migrated to <60 AU
 - optically thick lines?

Hogerheijde et al. (2011), Science 334, 338

DIGIT: Warm water content of disks

 H_2O / OH depends on stellar mass:

- H₂O / OH >> I
- M_{star} < 2 M_{sun}

- H₂O / OH < I
- M_{star} > 2 M_{sun}

Fedele et al. (2013)

Warm water content of disk

- High H₂O abundance in inner disk (< 10 AU)
- Warm H₂O in upper layer
- Low H₂O abundance in outer disk (freeze-out)

Woitke et al. (2009); Kamp et al. (2013); Fedele et al. (2013),...

Conclusions

- Surprisingly not that many gas lines detected
- Ratio between line fluxes can be a diagnostic of UV,

temperature, PAH abundance, and flaring

- [CII] line is weak in disks: contamination/outflows?
- CO FIR J-lines indicate that $T_{gas} > T_{dust}$
- OH/H₂O depends on stellar mass: UV intensity matters?
- In outer disks water is strongly depleted

Herschel instruments

- SPIRE (photometer & spectrometer):
- ~40 pixels FOV, 194–670 μm
- R = 40 1000 (PI: Cardiff Uni., UK)

- PACS (photometer & spectrometer):
- 25 pixels FOV, 60–210 μm
- R = 1000-5000 (PI: MPE Garching, DE)
- HIFI (heterodyne spectrometer):
- I-pixel FOV, 157–212 & 240–625µm

 $- R = 10^{7}$ (PI: SRON, NL)

