What we learn about the earliest phase of star formation from Herschel's detection of water vapor in L1544

Eric Keto

Center for Astrophysics Cambridge MA

Max Planck Institute for Astronomy Heidelberg, Germany

February 10 Center for Astrophysics, Cambridge, MA

How?

Source selection

• Starless cores

The birthplaces of solar-mass stars

Starless cores and protostars

IRAS data for 100 dense molecular cores in Taurus.

IRAS All Sky Survey (1983) Spitzer Cores to Disks Survey (C2D) (2003) Herschel Goulds Belt Survey (2009)

Myers 1983 Beichman 1986 Benson+ 1986 Benson & Myers 1989

The starless cores

- The birthplaces of solar-mass stars
 - Small,
 - Few tenths of a pc
 - Few M_{\odot}
 - Dense
 - 10 ⁵ cm ⁻³
 - Quiet
 - Subsonic spectral line widths
 - Hydrostatic

The starless cores

Subsonic internal velocities

Redman, Keto, Rawlings 2006

70% thermal 30% subsonic turbulence

Myers & Benson 1983

Hydrostatic density profiles Bonnor-Ebert spheres

How do starless cores contract to form stars?

We know the relationship between the nearly hydrostatic cores and protostars.

We know that the star formation follows gravitational collapse.

We do not know how this collapse proceeds.

How?

3 example collapse solutions

- Larson-Penston flow
 - Larson (1969), Penston (1969)
 - Star formation in supersonic turbulence
- Singular isothermal sphere
 - Shu (1977)
- Quasi-equilibrium contraction of a Bonnor-Ebert sphere (Keto, Caselli, Rawlings 2015)

Collapse solutions

LP flow $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} = -\frac{a^2}{\rho} \frac{\partial \rho}{\partial r} - \frac{GM}{r^2}$

Larson 1969 Penston 1969

Collapse solutions

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} = -\frac{a^2}{\rho} \frac{\partial \rho}{\partial r} - \frac{GM}{r^2}$$

SIS inside-out collapse

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} = -\frac{a^2}{\rho} \frac{\partial \rho}{\partial r} - \frac{GM}{r^2}$$

Collapse solutions

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} = -\frac{a^2}{\rho} \frac{\partial \rho}{\partial r} - \frac{GM}{r^2}$$

QE and NE BES

Bonnor 1956 -- Ebert 1957

QE and **NE** BES

Unstable equilibrium

Unstable equilibrium + 10%

Keto, Rawlings, Caselli 2014

Problem: All self-gravitating spherical clouds have similar R⁻² density profiles.

Solution: The collapse velocities are very different at large and small radii

Use molecular lines that are emitted from the inner and outer core

- H₂O (110-101) 556 GHz
 - Einstein A = 10⁻³ s⁻¹
 - critical density 10⁸ cm⁻³
- C¹⁸O (1-0) 110 GHz
 - Einstein A = 10⁻⁸ s⁻¹
 - critical density 10³ cm⁻³

Simplified Oxygen Chemistry

Simplified Oxygen in L1544

Desorption rates from Hollenbach, Kaufman, Bergin, Melnick 2009

L1544

5 dynamical models to compare

- SIS inside-out collapse
- LP flow
- Quasi-Equilibrium-BES
- Non-Equilibrium-BES
- static

Simulated and observed H₂O and C¹⁸O spectra

Keto, Rawlings, Caselli 2014

Conclusions

- There are several possible solutions for the gravitational collapse of starless cores
- These are observationally distinguishable by observational spectroscopy that measures the velocities in the inner and outer parts of the core.
- Only the slow collapse solution of a quasi-hydrostatic contraction matches the data.
- Only one core, L1544, so far.