Halogen-bearing interstellar molecules and what they can tell us David Neufeld Johns Hopkins University

Based on work with John Black, Maryvonne Gerin, Javier Goicoechea, Paul Goldsmith, Cecile Gry, Harshal Gupta, Eric Herbst, Nick Indriolo, Darek Lis, Karl Menten, Raquel Monje, Bhaswati Mookerjea, Carina Persson, Paule Sonnentrucker, and Mark Wolfire

New preprint posted last week on arXiv: 1505.00786

Halogen-bearing interstellar molecules detected to date

	HF	CF ⁺	HCI+	H ₂ Cl ⁺	HCI
Discovery	1997 * , 2010	2006	2012	2010	1985
Observatory	ISO * , Herschel	IRAM 30 m	Herschel	Herschel	CSO
Frequency (ground state)	1232 GHz	103 GHz	1444 GHz	485 GHz 782, 189 GHz	626 GHz
Minimum z for ALMA	0.30	0.00	0.52	0.00 (189 GHz) 0.09 (782 GHz)	0.00
	*Sgr B2 only				

Both F and Cl exhibit an distinctive thermochemistry

Element	Dominant Ionization state in diffuse ISM	X ⁺ + H ₂ → XH ⁺ +H	х + н ₂ → хн +н	X + H ₃ ⁺ → XH ⁺ + H ₂	Driver
С	C+	$C^+ + H_2 \rightarrow CH^+ + H$	$C + H_2 \rightarrow CH + H$	$C + H_3^+ \rightarrow CH^+ + H_2$	Warm gas
S	S ⁺	$S^+ + H_2 \rightarrow SH^+ + H$	$S + H_2 \rightarrow SH + H$	$(S + H_3^+ \rightarrow SH^+ + H_2)$	Warm gas
0	0	$O^+ + H_2 \rightarrow OH^+ + H$	$O + H_2 \rightarrow OH + H$	$O + H_3^+ \rightarrow OH^+ + H_2$	Cosmic rays or warm gas
F	F	$(F^+ + H_2 \rightarrow HF^+ + H)$	$F + H_2 \rightarrow HF + H$	$(F + H_3^+ \rightarrow HF^+ + H_2)$	None
Cl	Cl+	$Cl^+ + H_2 \rightarrow HCl^+ + H$	$CI + H_2 \rightarrow HCI + H$	$CI + H_3^+ \rightarrow HCI^+ + H_2$	UV
Ar	Ar	$Ar^+ + H_2 \rightarrow ArH^+ + H$	No reaction	$(Ar + H_3^+ \rightarrow ArH^+ + H_2)$	Cosmic rays

Blue : exothermic Green: nearly exothermic Red: endothermic Parentheses: unimportant

Both F and Cl exhibit an distinctive thermochemistry

Element	Dominant Ionization state in diffuse ISM	X ⁺ + H ₂ → XH ⁺ +H	х + н ₂ → хн +н	X + H ₃ ⁺ → XH ⁺ + H ₂	Driver
С	C+	$C^+ + H_2 \rightarrow CH^+ + H$	$C + H_2 \rightarrow CH + H$	$C + H_3^+ \rightarrow CH^+ + H_2$	Warm gas
S	S ⁺	$S^+ + H_2 \rightarrow SH^+ + H$	$S + H_2 \rightarrow SH + H$	$(S + H_3^+ \rightarrow SH^+ + H_2)$	Warm gas
0	0	$O^+ + H_2 \rightarrow OH^+ + H$	$O + H_2 \rightarrow OH + H$	$O + H_3^+ \rightarrow OH^+ + H_2$	Cosmic rays or warm gas
F	F	$(F^+ + H_2 \rightarrow HF^+ + H) \langle$	$F + H_2 \rightarrow HF + H$	$(F + H_3^+ \rightarrow HF^+ + H_2)$	None
Cl	Cl+	$Cl^+ + H_2 \rightarrow HCl^+ + H$	$CI + H_2 \rightarrow HCI + H$	$CI + H_3^+ \rightarrow HCI^+ + H_2$	UV
Ar	Ar	$Ar^+ + H_2 \rightarrow ArH^+ + H$	No reaction	$(Ar + H_3^+ \rightarrow ArH^+ + H_2)$	Cosmic rays

Blue : exothermic Green: nearly exothermic Red: endothermic Parentheses: unimportant

Both F and Cl exhibit an distinctive thermochemistry

Element	Dominant Ionization state in diffuse ISM	X⁺ + H ₂ → XH⁺ +H	х + н ₂ → хн +н	X + H ₃ ⁺ → XH ⁺ + H ₂	Driver
С	C+	$C^+ + H_2 \rightarrow CH^+ + H$	$C + H_2 \rightarrow CH + H$	$C + H_3^+ \rightarrow CH^+ + H_2$	Warm gas
S	S ⁺	$S^+ + H_2 \rightarrow SH^+ + H$	$S + H_2 \rightarrow SH + H$	$(S + H_3^+ \rightarrow SH^+ + H_2)$	Warm gas
0	0	$O^+ + H_2 \rightarrow OH^+ + H$	$O + H_2 \rightarrow OH + H$	$O + H_3^+ \rightarrow OH^+ + H_2$	Cosmic rays or warm gas
F	F	$(F^+ + H_2 \rightarrow HF^+ + H)$	$F + H_2 \rightarrow HF + H$	$(F + H_3^+ \rightarrow HF^+ + H_2)$	None
Cl	Cl+ ($Cl^+ + H_2 \rightarrow HCl^+ + H$	$CI + H_2 \rightarrow HCI + H$	$CI + H_3^+ \rightarrow HCI^+ + H_2$	UV
Ar	Ar	$Ar^+ + H_2 \rightarrow ArH^+ + H$	No reaction	$(Ar + H_3^+ \rightarrow ArH^+ + H_2)$	Cosmic rays

Blue : exothermic Green: nearly exothermic Red: endothermic Parentheses: unimportant

Chemistry of interstellar chlorine:

Chemistry of chlorine was investigated by:

Jura (1974) Dalgarno et al. (1974) Van Dishoeck & Black (1986) Blake et al. (1986) Schilke, Phillips & Wang (1995) Federman et al. (1995) Neufeld & Wolfire (2009)

Chemistry of interstellar fluorine

• Fluorine chemistry is very simple

(Neufeld et al. 2005, Neufeld & Wolfire 2009)

- If H₂ is present, HCl⁺ is produced rapidly
- But, HCl⁺ is destroyed rapidly by reaction with H₂ to form H₂Cl⁺
- H₂Cl⁺ undergoes dissociative recombination to form Cl or HCl (with some branching ratio), HCl is photodissociated to form Cl
- Cl is only slowly ionized (I.P. ~ 12.97 eV) and becomes the dominant form of chlorine once H₂ becomes abundant.

- If H₂ is present, HCl⁺ is produced rapidly
- But, HCl⁺ is destroyed rapidly by reaction with H₂ to form H₂Cl⁺
- H₂Cl⁺ undergoes dissociative recombination to form Cl or HCl (with some branching ratio), HCl is photodissociated to form Cl
- Cl is only slowly ionized (I.P. ~ 12.97 eV) and becomes the dominant form of chlorine once H₂ becomes abundant.

- If H₂ is present, HCl⁺ is produced rapidly
- But, HCl⁺ is destroyed rapidly by reaction with H₂ to form H₂Cl⁺
- H₂Cl⁺ undergoes dissociative recombination to form Cl or HCl (with some branching ratio), HCl is photodissociated to form Cl
- Cl is only slowly ionized (I.P. ~ 12.97 eV) and becomes the dominant form of chlorine once H₂ becomes abundant.

- If H₂ is present, HCl⁺ is produced rapidly
- But, HCl⁺ is destroyed rapidly by reaction with H₂ to form H₂Cl⁺
- H₂Cl⁺ undergoes dissociative recombination to form Cl or HCl (with some branching ratio), HCl is photodissociated to form Cl
- Cl is only slowly ionized (I.P. ~ 12.97 eV) and becomes the dominant form of chlorine once H₂ becomes abundant.

Halogen-bearing interstellar molecules detected to date

	HF	CF ⁺	HCI+	H ₂ Cl ⁺	HCI
Discovery	1997*, 2010	2006	2012	2010	1985
Observatory	ISO*, Herschel	IRAM 30 m	Herschel	Herschel	CSO
Frequency (ground state)	1232 GHz	103 GHz	1444 GHz	485 GHz 782, 189 GHz	626 GHz
Minimum z for ALMA	0.30	0.00	0.52	0.00 (189, 485) 0.09 (782 GHz)	0.00
Production	F(H ₂ ,H)HF	HF(C⁺,H)CF⁺	Cl ⁺ (H ₂ ,H)HCl ⁺	$HCI^{+}(H_2,H)H_2CI^{+}$	H₂Cl⁺(e,H)HCl
Traces	Total H ₂ column	Overlap of H ₂ and C ⁺ (CO-dark H ₂)	Gas with f(H ₂) ~ 0.02	Gas with $f(H_2) \approx 0.2$	Gas with f(H ₂) ~ 1
Extragalactic detections	Cloverleaf NGC 253 +			PKS 1830–211	
	*Sgr B2 only				12

Emphasis of this talk

	HF	CF ⁺	HCl⁺	H₂Cl⁺	HCI
Discovery	1997 * , 2010	2006	2012	2010	1985
Observatory	ISO*, Herschel	IRAM 30 m	Herschel	Herschel	CSO
Frequency (ground state)	1232 GHz	103 GHz	1444 GHz	485 GHz 782, 189 GHz	626 GHz
Minimum z for ALMA	0.30	0.00	0.52	0.00 (189, 485) 0.09 (782 GHz)	0.00
Production	F(H ₂ ,H)HF	HF(C ⁺ ,H)CF ⁺	Cl ⁺ (H ₂ ,H)HCl ⁺	HCl ⁺ (H ₂ ,H)H ₂ Cl ⁺	H₂Cl⁺(e,H)HCl
Traces	Total H ₂ column	Overlap of H ₂ and C ⁺ (CO-dark H ₂)	Gas with f(H ₂) ~ 0.02	Gas with $f(H_2) \simeq 0.2$	Gas with f(H ₂) ~ 1
Extragalactic detections	Cloverleaf NGC 253 +			PKS 1830–211	
	*Sgr B2 only				13

H₂Cl⁺ detections, in absorption, toward four bright submillimeter sources (Neufeld et al. 2015)

H₂Cl⁺ abundances are quite high

 $N(H_2Cl^+)/N(H_0) = (0.9 - 4.8) \times 10^{-9}$ ~ 1 - 5 % of gas-phase Cl

300 times as large as the fraction of O in H_2O^+ , reflecting the fact that Cl⁺ is the dominant ionization stage of Cl in diffuse atomic clouds

Actually up to a factor 5 larger than model predictions

..an overestimated destruction mechanism (e.g. dissociative recombination)?

Model predictions

Neufeld et al. 2012, A&A

In W49N, we also have a secure detection of $p-H_2Cl^+(1_{11}-0_{00})$: can measure the ortho/para ratio

Like other triatomic hydrides observed in the diffuse ISM (H_2O , H_2O^+), the OPR ~ 3 (the high-T LTE value , i.e. the ratio of statistical weights) 17

Interpretation of the OPR

H₂Cl⁺ is initially formed with some ortho-to-para ratio, OPR₀

The forward and backwards reactions

ortho-H₂Cl⁺ + H $\leftarrow \rightarrow$ para-H₂Cl⁺ + H

tend to drive it toward the ortho-to-para ratio corresponding to the gas temperature, OPR_{LTE}

Interpretation of the OPR

The actual ortho-to-para ratio lies somewhere between OPR₀ and OPR_{LTE}

 $OPR = x OPR_{LTE} + (1 - x) OPR_0$

Exactly where it lies depends on the relative rates of o-p conversion and destruction

 $x = k_{op}/[k_{op}n(H) + k_{dr}n_{e}]$ Two limits:

> A) Rapid conversion: $x \sim 1 \rightarrow OPR = OPR_{LTE}$ $(k_{op} >> 5 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1})$ B) Slow conversion: $x \sim 0 \rightarrow OPR = OPR_0$ $(k_{op} << 5 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1})$

What is the formation OPR?

Two limits

1) Complete spin scrambling: $OPR_0 = 5 OPR(H_2) + 3$ $OPR(H_2) + 3$

2) Hopping limit $OPR_0 = 3$

Ortho-to-para ratios versus temperature

21

The observed OPR is typically consistent with 3 and greater than 2.5

A) Fast conversion: OPR = OPR_{LTE} \rightarrow OPR_{LTE} > 2.6 \rightarrow T > 20 K

B) Slow conversion: $OPR = OPR_0$

1) Complete scrambling
 OPR = OPR₀ = (5 OPR(H₂) + 3)/(OPR(H₂) + 3)
 → OPR(H₂) > 2 → T > 110 K

2) Hopping limit
 OPR = OPR₀ = 3
 → no constraint on physical conditions

$H_2^{35}Cl^+/H_2^{37}Cl^+$ ratio in W49N

Observed ratio is consistent with solar system ³⁵Cl/³⁷Cl isotopic ratio of 3.1 Unique role of molecular observations in Galaxy and at high-²³

Interpretation of the ³⁵Cl/³⁷Cl ratio The ratio derived from H₂³⁵Cl⁺/H₂³⁷Cl⁺ is similar to that measured previously in a variety of environments

Source	³⁵ Cl/ ³⁷ Cl	Species	Ref.
Solar system	3.13	Cl	1
IRC+10216	2.3 ± 0.5	NaCl, AlCl	2
Ori A	~4–6	HCl	3
IRC+10216	3.1 ± 0.6	NaCl, KCl, AlCl	4
IRC+10216	2.30 ± 0.24	NaCl, AlCl	5
W3 A [†]	2.1 ± 0.5	HCl	6
NGC 6334I, Sgr B2(S) ^{\dagger}	~2.7–3.3	H ₂ Cl ⁺ and HCl	7
10 Galactic sources	$\sim 1 - 5^{\ddagger}$	HCl	8
W31C, Sgr A [†]	~2–4	H_2Cl^+	9
W31 C [†]	2.1 ± 1.5	HCl ⁺	10
W31 C [†]	~2.9	HCl	11
CRL 2136	$2.3 \pm 0.4^{\circ}$	HCl	12
PKS 1830-211(SW) [†]	$3.1^{+0.3}_{-0.2}$	H_2Cl^+	13
PKS 1830-211(NE) [†]	>1.9*	H_2Cl^+	13

Muller et al. (2014)

24

This result is not exactly accounted for in current nucleosynthesis models

Kobayashi et al. (2011) results, as presented by Muller et al. (2014)

25

Summary of new results on H₂Cl⁺

- Abundances N(H₂Cl⁺)/N(H⁰) = 1 − 5 x 10⁻⁹ lie a factor 1 − 5 above the maximum predictions for diffuse clouds → destruction rate overestimated?
- OPR ratios consistent with 3 → one or more of

 (1) T > 110 K
 (2) o/p conversion is fast and T > 20K
 (3) formation occurs without spin scrambling

 Need a better understanding of underlying chemistry
- N(H₂³⁵Cl⁺)/N(H₂³⁷Cl⁺) consistent with solar system value of 3.1: not exactly accounted for by models