GREAT results from SOFIA

Volker Ossenkopf, Rolf Güsten, Stefan Heyminck, Jürgen Stutzki, Christoph Risacher, Netty Honingh, Urs Graf, Patrick Pütz, Sandra Brünken, Stephan Schlemmer, David Neufeld, Helmut Wiesemeyer, Silvia Leurini, Juan-Pablo Beaupuits-Perez, Robert Simon, Yoko Okada, Karl Menten

I. Physikalisches Institut, Universität zu Köln Max-Planck-Institut für Radioastronomie, Bonn Deutsches Zentrum für Luft- und Raumfahrt, Berlin

V. Ossenkopf

High-Resolution Spectroscopy Workshop

Zakopane

5/19/15

Overview

- SOFIA
- GREAT
- (Galactic) Science with GREAT
 - First detections
 - Velocity-resolved spectra
 - The [OI] ground-state line
 - Gas kinematics and composition
 - The ISM cooling balance
- Outlook: upGREAT

SOFIA

Stratospheric Observatory for Infrared Astronomy

- Boeing 747SP (Special Performance)
- Operating altitude: 11-14km
 - above 99.8 percent of the Earth's atmospheric water vapor
 - mainly from Palmdale/CA
- US/German project
 - 80/20 in cost & time
- Telescope:
 - Primary Mirror:
 - 2.7 meters
 - λ > 0.3µm
 - Chopper: 10' at 2Hz
 - Pointing ~ 1"

Instruments

Science Instrument	Type*	Developing Institution	Principal Investigator	Instrument Description
FORCAST	FSI	Cornell University	Herter	Simultaneous Dual Channel Imaging and Grism Spectroscopy (5-25 μ m and 25-40 μ m)
GREAT	PSI	Max Planck Institute, Bonn	Güsten	High Resolution (R > 10 ⁶) Heterodyne Spectrometer (1.25-1.9THz; 2.5-2.7THz; 4.7 THz)
HIPO	SSI	Lowell Observatory	Dunham	Visible Light High-Speed Camera (0.3-1.1 μ m)
FLITECAM	FSI	UCLA	McLean	Near Infrared Imaging and Grism Spectroscopy, (1-5.5 μ m); Can be used in combination with HIPO
FIFI-LS	PSI → FSI	University of Stuttgart	Krabbe	Dual Channel Integral Field Grating Spectrometer (42-110 μ m; 100-210 μ m)
EXES	PSI	UC Davis	Richter	High Resolution (R > 10 ⁵) Echelle Spectrometer (5-28 μ m)
HAWC → HAWC+	FSI	University of Chicago \rightarrow JPL	Harper → Dowell	High-Angular Resolution Wide-Band Camera with 4 Channels (50 μ m, 100 μ m, 160 μ m, 200 μ m)

V. Ossenkopf

Zakopane

Instruments

V. Ossenkopf

High-Resolution Spectroscopy Workshop

Zakopane

Cycle 4 call

- Observing period: Feb 2016 Jan 2017
- All 7 instruments offered:
 - EXES, FIFI-LS, FLITECAM, FORCAST, GREAT, HAWC+, HIPO, and the FLITECAM/HIPO combination
 - Instruments for Southern deployment tbd., based upon requests
- SOFIA Impact Programs solicited
 - Multi-year programs
 - Joint US German Impact Programs
- Deadline:
 - July 10
- http://www.dsi.uni-stuttgart.de/observatorium/proposals/cycle04/index.html (D)
- http://www.sofia.usra.edu/Science/proposals/cycle4/index.html (US)

GREAT

German REceiver for Astronomy at Terahertz-Frequencies

- Heterodyne receiver
 - Single pixel
 - Dual channel
 - Two frequencies simultaneously
 - 1.2 4.7 THz
 - in 5 frequency-bands

- XFFTS
 - 64000 channels
 - Bandwidth: 2.5GHz
 - Resolution: 44kHz (R = 10^8)

V. Ossenkopf

High-Resolution Spectroscopy Workshop

GREAT

Frequencies:

Channel		Frequencies [THz]	Lines of interest
low-frequency	L1	1.26 – 1.52	[NII], CO series, OD, H ₂ D ⁺
low-frequency	L2	1.82 – 1.91	NH ₃ , OH, CO(16-15), [CII]
mid-frequency	Ма	2.49 – 2.56	⁽¹⁸⁾ ОН(² П _{3/2}),
	Mb	2.67	HD
high-frequency	н	4.74	[OI]

- System temperature (DSB):
 - 700 800K in L1 and L2 channels
 - 2000 2500K in M and H channels
- Beam:
 - -22" (1.26 THz)
 - -6.6" (4.74 THz)

GREAT science

- Focused on main cooling lines:
 - -[OI], [CII]
- OH, HD
- High-J CO transitions
- Hydrides
- Covers HIFI-gap

V. Ossenkopf

HD detection:

- Sgr B2
 - Previously claimed detection (Polehampton et al. 2002, LWS: 55K km/s) very unlikely
 - Narrow line

Güsten et al. in prep.

HD detection towards SgrB2 (M)

para-H₂D⁺ detection:

- IRAS16293-2422
 - Measure o/p ratio in H₂ through o/p of H₂D⁺
 - At low T $p-H_2D^+ + o-H_2 \rightarrow o-H_2D^+ + p-H_2$ dominates over back reaction
 - Chemical clock

→ Cold gas in dense envolope for 5 10^5 - 5 10^6 a

Brünken et al. (2014)

SH detection:

• In absorption towards W49N, W31C, W51, G29.96-0.02, G34.3+0.1

• Several foreground clouds \rightarrow spiral structure

V. Ossenkopf

SH detection:

- SH is only produced at elevated temperatures
 - Key tracer for warm diffuse chemistry
 - Requires shock or TDR models
 - But so far they fail to explain H₂S/SH ratio

Neufeld et al. (2014)

Zakopane

5/19/15

High-resolution spectra

OH absorption:

- 119µm ground state transitions
 - First >2THz spectroscopy
 - Absorption towards W49N
 - Spectral features of Sagittarius arm
 - Discovery of ¹⁸OH
 - OH saturated towards W49N
 - X(OH)=10⁻⁷ 10⁻⁸

Wiesemeyer et al. (2012)

T_{mb} [K]

Zakopane

MPIfR KOSMA

MPS

DLR-Pf

OH absorption

Systematics (G10.47, G34.26, W31C, W49N, G327.29, G351.58):

- OH⁺ traces atomic, OH rather molecular diffuse gas:
 - OH⁺ has lower arm/interarm contrast than OH
 - [OH]/[OH⁺] correlated with H₂: bottleneck OH+ H₂ \rightarrow H₂O+H
 - H₂O/OH ratio to be explained by TDR model

Wiesemeyer et al. in prep.

V. Ossenkopf

Zakopane

 $[OI] ({}^{3}P_{1} - {}^{3}P_{2} = 63 \mu m)$

[OI] absorption:

Wiesemeyer et al. in prep.

• Complex profiles in many sources

• [OI] traces both atomic & molecular diffuse gas, up to $A_V \sim 1$ mag

V. Ossenkopf

High-Resolution Spectroscopy Workshop

Zakopane

information

$[OI] {}^{3}P_{1} - {}^{3}P_{2}$

S140:

- First [OI] 63µm observations with H-channel
- [OI] strongly peaked, but at IRS2, not IRS1
 - Resolved in [OI]: FWHM = 8.3" = 0.03pc, $L([OI])=0.05 L_{\odot},$ $L([CII])=0.28 L_{\odot},$ $L(dust)=2000 L_{\odot}$
 - IRS1, the main energy source of the region produces almost no [CII] and [OI] 22^h

V. Ossenkopf

Line profiles

[OI] with moderate self-absorption, [CII] partially optically thick

- 1.5km/s velocity difference between IRS2 and bulk of cloud
- PDR model fits:

[CII] intensity requires 10⁵ cm⁻³, dust 10⁶ cm⁻³, [OI] 300 cm⁻³

• Nature of the source:

Big puzzle!

V. Ossenkopf

High-Resolution Spectroscopy Workshop

Zakopane

[OI] ³P₁ -³P₂

[OI] ³P₁ -³P₂

G5.89-0.39:

- [OI] is main coolant:
 - 75% of total line luminosity
 - Dominates cooling budget
 - Strongly self-absorbed
 - High-velocity emission!
- The large scale molecular outflow is driven by atomic jets!
 - 10⁻⁴ M $_{\odot}/a$

Leurini et al. subm.

V. Ossenkopf

Zakopane

5/19/15

NGC 2024

- HII region shadowed by optically opaque dust lane
- [CII], [¹³CII], and [OI] mapped by GREAT

Graf et al. (2012)

[OI] ³P₁ -³P₂

NGC2024:

- 85% of [OI] emission obscured by foreground
- Consistent with foreground hydrogen column density 10²² cm⁻²
- Background [OI] / [CII] intensity ratio ~ 5 indicates substantial density and radiation field
- Full model still pending

Graf et al. in prep.

V. Ossenkopf

Zakopane

5/19/15

NGC 2024

• [CII] and [¹³CII]

- [¹³CII] emission requires N(¹³C⁺) ~ 2.6x10¹⁷ cm⁻² \rightarrow N(H) ~ 1.6 10²³ cm⁻²
- This is as high as the total column density deduced from CO!

V. Ossenkopf

High-Resolution Spectroscopy Workshop

Zakopane

Gas composition and kinematics

M17SW (Clumpy PDR):

- GREAT mapping of the cloud in [CII], CO 13-12 and 16-15
- Many complementary observations with APEX

Clear PDR stratification with layering structure between HII (radio continuum), [CII], hot CO and [CI] Perez-Beaupuits et al. (2015)

V. Ossenkopf

High-Resolution Spectroscopy Workshop

Zakopane

5/19/15

M17 SW

- 64% of the mass traced by [C II] is not associated with star-forming material traced by [CI] and C¹⁸O
- Assignment to phases:
 - 36% HII
 - 17% HI

– 47% - H₂

- Most [CII] at velocities far from the cloud velocity has no high-density counterpart
- Large-scale flows and photo-evaporation
 - Perez-Beaupuits et al. (2015)

V. Ossenkopf

High-Resolution Spectroscopy Workshop

40

5/19/15

Cooling balance

- [OI] and [CII] are main cooling lines of the dense ISM
- CO ladder also traced by GREAT observations
- Line to continuum ratio should measure gas heating efficiency S140:
 - Factor 100 lower than in PDRs

Similar to line deficit in ULIRGS

40

10

 $\log_{10}(([OI]+[CII])/TIR)$

V. Ossenkopf

High-Resolution Spectroscopy Workshop

Zakopane

27

5/19/15

sr⁻¹]

Ε

TIR [W

We are still at the very beginning!

- More new detections with GREAT are to be expected! (e.g. $C_3^+...$)
 - Constraints on TDR models from several hot-chemistry tracers
 - > OH allows to assess H_2 fraction
- [OI] traces velocity structure and foreground in a complex way
 - [CII] + [OI] to FIR continuum cooling between 10^{-4.5} and 10⁻²
 - No clear correlation between line deficit and self-absorption
 - Gas distribution towards many sources poorly known
 - Large fraction of gas only seen in [CII]
- Assessment of the full gas reservoir only from velocity-resolved observations of many species: at least CO, CI, CII, OI, OH, and OH⁺
- We need more large-scale mapping projects

Outlook

• UpGREAT

- LFA (1.9-2.5THz): 2x7 pixels HFA (4.7THz): 7 pixels
- Sucessfully commissioned yesterday!
- Performance as good as single-pixel

High-Resolution Spectroscopy Workshop

Outlook

• UpGREAT

- Cycle 4 call is updated to include LFA at 1.9THz !

	Low Frequency Array (LFA)	High Frequency Array (HFA)
RF Bandwidth	1.9-2.5 THz (goal)	~4.745 THz
IF Bandwidth	0.2 - 4 GHz	0.2 - 4 GHz
HEB technology	Waveguide-based HEB NbN on Si membrane	Waveguide-based HEB NbN on Si membrane
LO technology	Cooled photonic mixers (goal) / solid-state chains (baseline)	Quantum cascade lasers (QCL)
LO coupling	Beamsplitter	Beamsplitter
Array layout	2x7 pixels for orthogonal polarizations in hexagonal configuration with central pixel	1x7 pixels in hexagonal configuration with a central pixel
Expected T _{REC}	~600-1200K DSB 0-4GHz IF	~800-1600K DSB 0-4GHz IF
Backends	0-4 GHz with 16k channels	0-4 GHz with 16k channels

V. Ossenkopf

High-Resolution Spectroscopy Workshop

Zakopane

- Deadline:
 - July 10
- http://www.dsi.uni-stuttgart.de/observatorium/proposals/cycle04/index.html (D)
- http://www.sofia.usra.edu/Science/proposals/cycle4/index.html (US)