Detection of vibronic bands of C₃ in a translucent cloud towards HD 169454

M. R. Schmidt,¹ J. Krełowski,² G. A. Galazutdinov,³ D. Zhao,⁴ M. A. Haddad,⁵ W. Ubachs,⁵ H. Linnartz⁴

¹NCAC, Toruń, Poland

²CfA, Nicolaus Copernicus University, Toruń

³Instituto de Astronomia, Universidad Catolica del Norte, Antofagasta

⁴Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory

⁵Department of Physics and Astronomy, LaserLaB, VU University, Amsterdam

Zakopane, 2015

Introduction Laboratory data Observational data Analysis Excitation model of C3 in diffuse clouds Chemistry of C3 in diffuse cl

Reference

Schmidt et al. (2014) MNRAS, 441, 1134 arXiv:1403.7280

Outline

- 2 Laboratory data
- 3 Observational data
- Analysis
- 5 Excitation model of C3 in diffuse clouds
- 6 Chemistry of C3 in diffuse clouds

Summary

C3 spectrum from the comet lkeya

The 19^{th} century discovery of the 4052 Å band in the spectrum of comet Tebbutt (Huggins 1881), the assignment of this blue absorption feature to the C₃ molecule made by Douglas (1951)

Vibration-rotation lines of C3 ν_3 in circumstellar shell of IRC+10216

Hinkle, Keady, & Bernath, 1988, Science, 241, 1319

Vibration-rotation lines of C3 ν_2 in Sgr B2

ISO LWS absorption lines towards Sgr B2 (Cernicharo, Goicoechea, & Caux 2000, 534L, 199). Also Herschel/HIFI observations of C₃ originating in the warm envelope of massive star forming regions (Mookerjea 2010, 2012).

Cometary system C3 around 4050 Å in diffuse clouds

Cometary system C3 around 4050 Å in diffuse clouds

Adamkovics, Blake, & McCall 2003, ApJ, 595, 235

Monninger et al. 2002, J. Phys. Chem. A, 106, 5779

Electronic absorption spectrum of carbon vapor trapped in solid neon at 4.3 K in the vacuum ultraviolet-visible wavelength range. The two electronic transitions of C_3 at 1600 and 1700 Å are the dominant features.

Electronic structure of C3

State	Te	ω_1	ω_2	ω_3
	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹
$^{1}\Sigma_{u}^{+}$	${\sim}44000$	1080.0	300.0	780.0
$^{1}\Delta_{u}/\Pi_{g}$	${\sim}34710$	940.0	168.0	
$b^3\Pi_q^+$?~26000		345.0	
$A^1\Pi^{\tilde{u}}_u$	25000	1089.9	311.1	563.0
$a^3\Pi_u^+$	17076	1154.2	505.0	1455.3
$X^{1}\Sigma_{g}^{+}$	0	1226.0	63.5	2040.0

Comments

- A¹Π_u-X¹Σ⁺_g cometary system around 4050 Å
- $a^{3}\Pi_{u}^{+}-X^{1}\Sigma_{g}^{+}$ weak emission at 5865 Å
- ${}^{1}\Sigma_{u}^{+}-X^{1}\Sigma_{g}^{+}$ strong band around 1700 Å
- $a^3\Pi_u^+$ metastable level (lifetime about 20 ms)

Laboratory experiment

Laboratory spectra of C_3 are recorded in direct absorption using cavity ring-down laser spectroscopy. In the experiment, supersonically jet-cooled C_3 radicals are produced in a pulsed (10 Hz) planar plasma expansion generated by discharging 0.5% C_2H_2 diluted in a 1:1 helium/argon gas mixture. A 3 cm \times 300 μ m slit discharge nozzle is employed to generate a planar plasma expansion which provides an essentially Doppler-free environment and a relatively long effective absorption path length. The rotational temperature of C_3 in the plasma jet is estimated at 30 K.

Laboratory data

- The wavelength accuracy of better than 0.01 Å is achieved in the final laboratory spectrum, except for the 02⁺⁰ – 000 band at ~3916 Å, where the line position of the strongest C₃ transition, i.e. Q(4) line at 3916.05 Å, in the astronomical spectrum towards HD 169454. This yields an absolute wavelength accuracy of ~0.05 Å for the 02⁺⁰ – 000 band, while the accuracy of relative line positions within this band is better than 0.01 Å.
- the absolute line intensities in the recorded spectrum may be underestimated, due to a specific linewidth effect associated with the cavity ring-down technique, hence in the analysis the theoretical rotational strengths are used

Observational material

The observational material was obtained using the UVES spectrograph mounted on the ESO Very Large Telescope at Paranal (Chile) with resolution R = 80,000 in the blue arm (3020 – 4980 Å) occupying the C₃ **bands** of interest, as well as CH and CH⁺. The spectra, averaged over 10 - 50 exposures are of exceptionally high S/N ratio with values between 1900-2800.

Positions of rotational lines are marked with thick lines. Thin line tags mark perturbed rotational lines (Zhang et al. 2005).

Spectrum of A-X 100–000 band in sightline to HD 169454

Spectrum of A-X 002–000 band in sightline to HD 169454

Spectrum of A-X 02-0–000 band in sightline to HD 169454

Spectrum of A-X 02+0–000 band in sightline to HD 169454

Spectrum of A-X 04-0–000 band in sightline to HD 169454

Spectrum of A-X 04+0–000 band in sightline to HD 169454

Spectrum of A-X 12-0–000 band in sightline to HD 169454

- earlier finding list of different bands: Zhang et al. (2010) (000-000 including perturbations) Chen et al. (2010), Gausset et al. (1963)
- electronic transition moment f_{e/}=0.0246 (Becker 1979)
- Franck-Condon factors of 000-000 transition 0.746 from Radic (1977)
- Honl-London factors standard formula for J,K
- perturbative approach Honl-London factors for 000-000 diagonalization of experimental hamiltonian of Zhang et al. (2010)

Franck-Condon factors of the analysed vibronic bands.

Origin	Band	FC		References	
(Å)		J&M	R-P	this work	
4051.6	000 П _и	0.594	0.741	0.741	1,2
3880.7	100 П _и			0.13±0.02	2
3992.8	02 ⁻ 0 П _и	0.087	0.170	$0.14{\pm}0.03$	3
3916.0	02 ⁺ 0 П _и	0.081	0.170	$0.14{\pm}0.03$	2
3929.5	04 ⁻ 0 П _и	0.083	0.056	$0.10{\pm}0.03$	2
3801.7	04 ⁺ 0 П _и	0.048	0.056	$0.10{\pm}0.03$	4
3794.2	002 П _и			$0.08{\pm}0.02$	4
3826.0	12 [–] 0 П _и			$0.04{\pm}0.01$	2,5

Positions of rotational lines are marked with thick lines. Thin line tags mark perturbed rotational lines (Zhang et al. 2005).

Laboratory Spectrum of A-X 000-000 (Zhang et al. 2005)

Excitation spectra (LIF) of $A^1\Pi_u$ -X¹ Σ_g recorded at two different gatings: 20-150 ns (upper trace), 800-2300 (lower trace). Positions of perturbed rotational lines are marked with triangles (triplet state) and hexagons (P=1)

Laboratory Spectrum of A-X 000-000 (Zhang et al. 2005)

Laboratory Spectrum of A-X 000-000 (Zhang et al. 2005)

TABLE IV. Matrices for a deperturbation of the rotational level structure of the $\tilde{A}^{-1}\Pi_{\mu}$, 000 state of C₃ and its perturbing states. There are two matrices, one for *e* parity and one for *f* parity. The *e* parity matrix is of order 4, as shown; the *f* parity matrix, of order 3, is obtained by striking out the last row and column. The upper and lower signs refer to the *f* and *e* parity matrices, respectively. A case (a) basis has been assumed for the ${}^{3}\Sigma^{-}$ state.

	$ \tilde{A} ^{1}\Pi_{u},f/e\rangle$	$ P=1,f/e\rangle$	$\left {}^{3}\Sigma_{1u}^{-},f/e\right\rangle$	$ ^{3}\Sigma_{0u}^{-},e angle$
$\langle \widetilde{A} \ ^1\Pi_u, f/e \big $	$T_0^{\Pi} + (B^{\Pi} \pm q^{\Pi}/2)J(J+1) -D^{\Pi}J^2(J+1)^2$	а	ξ	0
$\langle P = 1, f/e $		$T_0^P + B^P J(J+1)$ $\pm (q^P/2)J(J+1)$	0	0
$\langle {}^3\Sigma^{1u},f/e $			$T_0^{\Sigma} + B^{\Sigma} J(J+1) \\ + (2/3)\lambda - \gamma$	$-(2B^{\Sigma}-\gamma)[J(J+1)]^{1/2}$
$\langle {}^3\Sigma^{0u}, e $	symmetric			$T_0^{\underline{\Sigma}} + B^{\underline{\Sigma}}[J(J+1)+2] - (4/3)\lambda - 2\gamma$

The fit (red line) using unperturbed line strengths.

The fit (blue line) using perturbed line strengths.

The fit using (blue line - perturbed, red line uperturbed) line strengths.

Spectrum of A-X 100–000 band in sightline to HD 169454

Spectrum of A-X 002–000 band in sightline to HD 169454

Spectrum of A-X 02-0–000 band in sightline to HD 169454

Spectrum of A-X 02+0–000 band in sightline to HD 169454

Spectrum of A-X 04-0–000 band in sightline to HD 169454

Spectrum of A-X 04+0–000 band in sightline to HD 169454

Spectrum of A-X 12-0–000 band in sightline to HD 169454

Information on column densities in HD 169454

Column density distribution of $C_3 X^1 \Sigma_q^+$ 000 rotational levels

The dashed line shows the thermal population at 22.4 K obtained from the weighted linear fit to levels J = 0, 2, 4, 6.

The observed molecular column densities towards HD 169454.				
Molecule	Ν _{col} (10 ¹² cm ⁻²)	T _{exc} (K)	Source	
C ₂	65±1	19±2	Kazmierczak et al. (2010)	
	73±14	15^{+10}_{-5}	Jannuzi et al. (1988)	
	70±14		Oke et al. (2002)	
	160±29		Adamkovics et al. (2003)	
C ₃	$6.61{\pm}0.19$	22.4±1.0	Schmidt et al. (2014)	
	$2.24{\pm}0.66$	$23.4{\pm}1.4$	Adamkovics et al. (2003)	
	4.5±0.3	42	Oke et al. (2002)	
C_4	<4-40	\sim 120	this work	
CH	$39.6{\pm}0.3$		Schmidt et al. (2014)	
	46±8		Jannuzi et al. (1988)	
	$36.5^{+12.6}_{-7.8}$		Crawford (1997)	
CH^+	20.8 ± 0.2		Schmidt et al. (2014)	
H ₂	(8×10 ²⁰)		Schmidt et al. (2014)	

The observed molecular column densities towards HD 169454.				
Molecule	Ν _{col} (10 ¹² cm ⁻²)	T _{exc} (K)	Source	
C ₂	65±1	19±2	Kazmierczak et al. (2010)	
	73±14	15^{+10}_{-5}	Jannuzi et al. (1988)	
	70±14		Oke et al. (2002)	
	160±29		Adamkovics et al. (2003)	
C ₃	$6.61 {\pm} 0.19$	22.4±1.0	Schmidt et al. (2014)	
	$2.24{\pm}0.66$	$23.4{\pm}1.4$	Adamkovics et al. (2003)	
	4.5±0.3	42	Oke et al. (2002)	
C_4	<4-40	\sim 120	this work	
СН	$39.6{\pm}0.3$		Schmidt et al. (2014)	
	46±8		Jannuzi et al. (1988)	
	$36.5^{+12.6}_{-7.8}$		Crawford (1997)	
CH^+	20.8±0.2		Schmidt et al. (2014)	
H ₂	(8×10 ²⁰)		Schmidt et al. (2014)	

Excitation mechanism

Roueff et al. (2002) presented an excitation model of C_3 towards HD 210121. An interesting aspect of their approach was the inclusion of **destruction and formation processes** of C_3 , in view of its short life time in typical diffuse clouds. As a consequence, **the initial population of the highest rotational levels in the formation process may not change** significantly by collisions before the molecule is destroyed by photodissociation. The excitation model provide us information on the local gas density and gas temperature (C_2).

Excitation mechanism - assumptions

- when C₃ is formed with initial population of levels is well described by the formation temperature, T_f of order of 150-300 K
- C_3 is destroyed by the photodissociation process, $D{\sim}0.5\,10^{-9}~s^{-1}$
- in C₃ dipole rotational transitions are forbidden, quadrupole transitions left
- levels are excited by collisions with H₂ and He
- and through far infrared pumping

C3 excitation model - results

The solid red line show the predictions of the excitation models of Roueff et al. (2002) for n_{H_2} =1000 cm⁻³, T_{gas} =16 K, D=1×10⁻⁹ s⁻¹.

C3 excitation model

The solid blue line show the predictions of the excitation models for n_{H_2} =500 cm⁻³, T_{gas} =18 K, D=12×10⁻⁹ s⁻¹ and collisional rates of Ben Abdallah et al. (2008).

Excitation mechanism - conclusions I.

- a one parameter family of models may be constructed as a function of the gas density, here assumed to be composed of molecular hydrogen, the density n_{H_2} is varied in a range between 400 and 5000 cm⁻³
- the best fits for fixed densities n_{H_2} are described by the following sets of (n_{H_2}, T_k, D) parameters: (400 cm⁻³, 12 K, $0.5 \times 10^{-9} \text{ s}^{-1}$), (500 cm⁻³, 13 K, $0.6 \times 10^{-9} \text{ s}^{-1}$), (1000 cm⁻³, 16 K, $1 \times 10^{-9} \text{ s}^{-1}$), and (5000 cm⁻³, 18 K, $5 \times 10^{-9} \text{ s}^{-1}$)
- the formation temperature T_f is determined at 300^{+50}_{-30} K.
- for higher densities above $n_{H_2} = 1000 \text{ cm}^{-3}$, one observes that the population distribution depends on the ratio of the collisional rate to the destruction rate, $n_{H_2}q_{ul}/D$, with q_{ul} the rate coefficient

Excitation mechanism - conclusions II.

- when new collisional rates of C₃ He of Ben Abdallah et al. (2008) are used then:
- the parameters of the best fit models are changed
- the two exemplary models characterized by set of (n_{H_2}, T_k, D) parameters: (500 cm⁻³, 18 K, $12 \times 10^{-9} \text{ s}^{-1}$) and (1000 cm⁻³, 18 K, $24 \times 10^{-9} \text{ s}^{-1}$), the uncertainty of the formation temperature in this approach is estimated at $T_f = 250^{+50}_{-30} \text{ K}$.
- the best fit dissociation rates much above accepted values $.5 \times 10^{-9} \text{ s}^{-1}$ (van Dishoeck 1988).

Excitation mechanism - final conclusions

- the excitation model parameters sensitive to collisional rates
- much to high parameter of the photodissociation rate, found 10⁻⁸ s⁻¹, expected 0.5 10⁻⁹ s⁻¹ when new collisional rates are used

C₂ and C₃ formation in diffuse clouds

Schematic outline of chemical reactions connected with C_2 and C_3 formation.

C₂ and C₃ formation in diffuse clouds

Abundances of CH, C₂, C₃, and C₄ carbon species computed as a function of the total visual absorption A_V (PDR-Meudon code). C₂H toward HD169454 - with IRAM - expected T_{mb} few to tens mK.

Summary

- for the first time 8 vibronic bands of the cometary system are identified in diffuse cloud
- high level of spectral details including pertubed states
- the observed transitions constrain excitation model