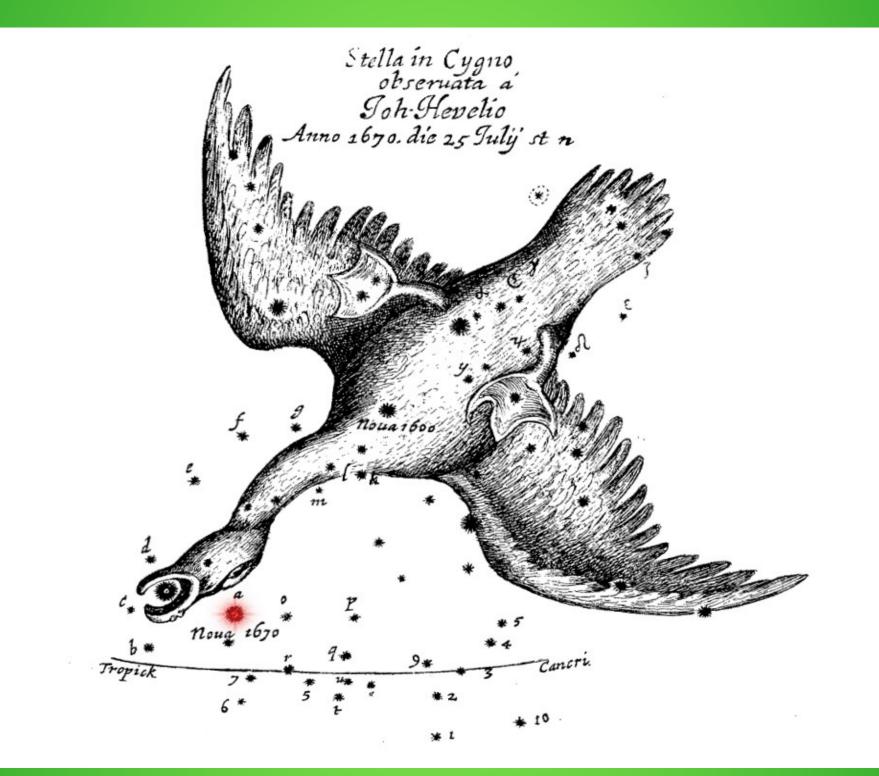
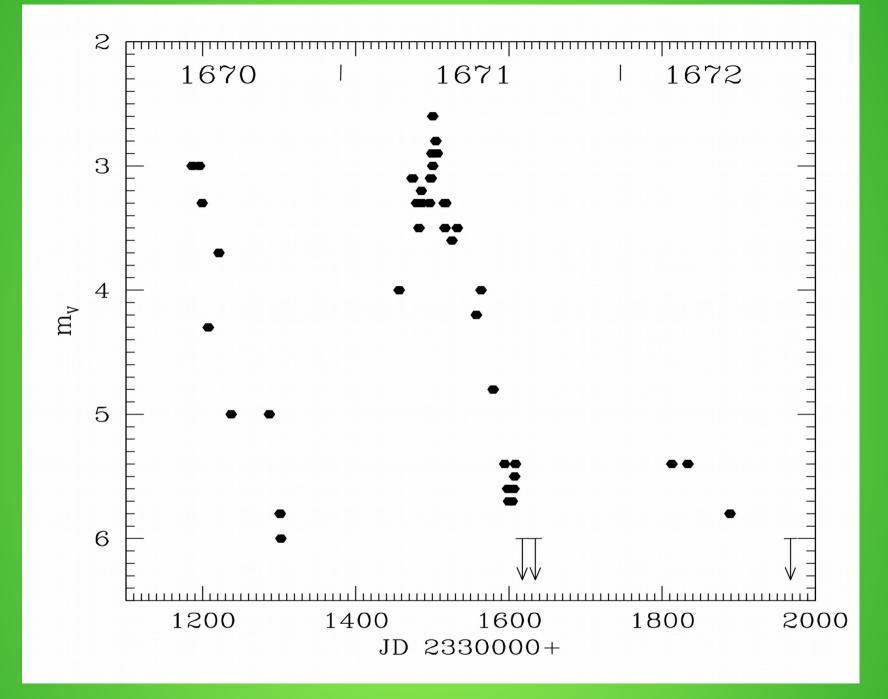
A rich submillimetre molecular emission from the oldest nova-like object, CK Vul = Nova Vul 1670

> Romuald Tylenda (CAMK PAN Toruń)


in collaboration with


T. Kamiński (ALMA-ESO), K.M. Menten (MPIfR), M. Hajduk (CAMK), N.A. Patel (CfA), A. Kraus (MPIfR)

Nova Vul 1670 = CK Vul

Discovered on 20 June 1670 by Dom Anthelme in Dijon a month later by Jan Heweliusz (Johannes Hevelius) in Gdańsk

Observed in 1670-72 mostly by Jan Heweliusz and Giovanni Cassini in Paris

Light curve of Nova Vul 1670 (data from Hevelius, Cassini, et al.)

Nova Vul 1670 (CK Vul) - a classical nova?

Shara et al. (1985) discovered an U-shaped nebulosity seen in the H α +[NII] lines and a possible (M_R = +10.4) central star.

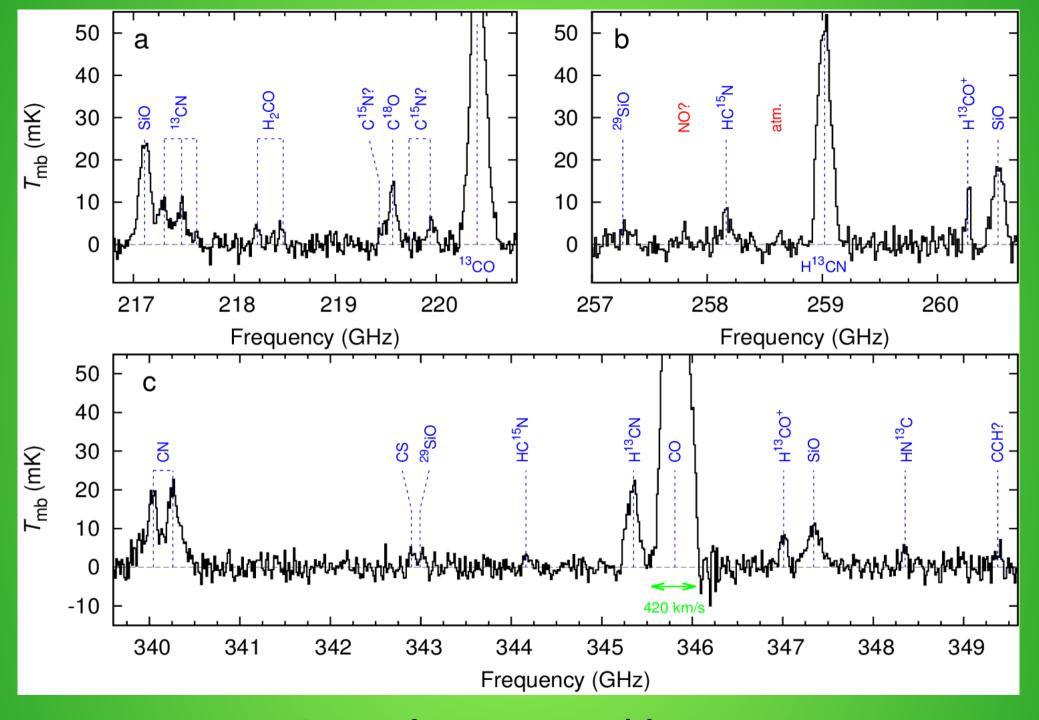
Shara et al. (1986) invented a nova hibernation scenario.

Evans et al. (2002) found a far-IR excess, which was inconsistent with an old nova but perhaps indicating a final thermal pulse.

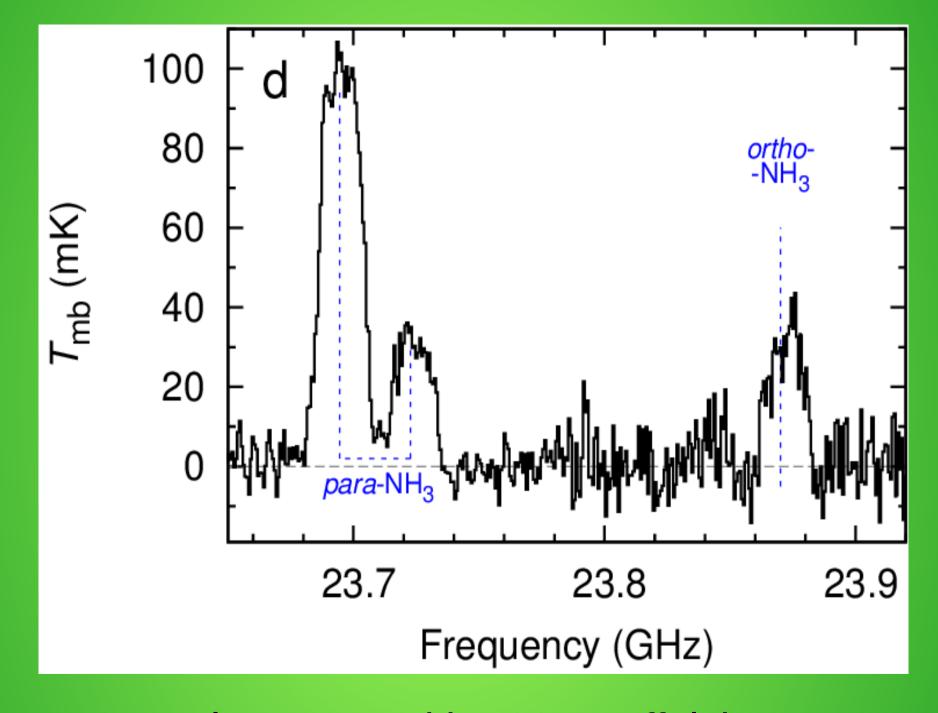
Hajduk et al. (2007) found a compact radio source and a bipolar nebula with a low-ionization spectrum indicating a shock ionization.

Kato (2003) and Tylenda et al. (2013) suggested a red-nova (stellar merger) nature on the basis of the light curve.

CK Vul: a submillimetre source rich in molecules

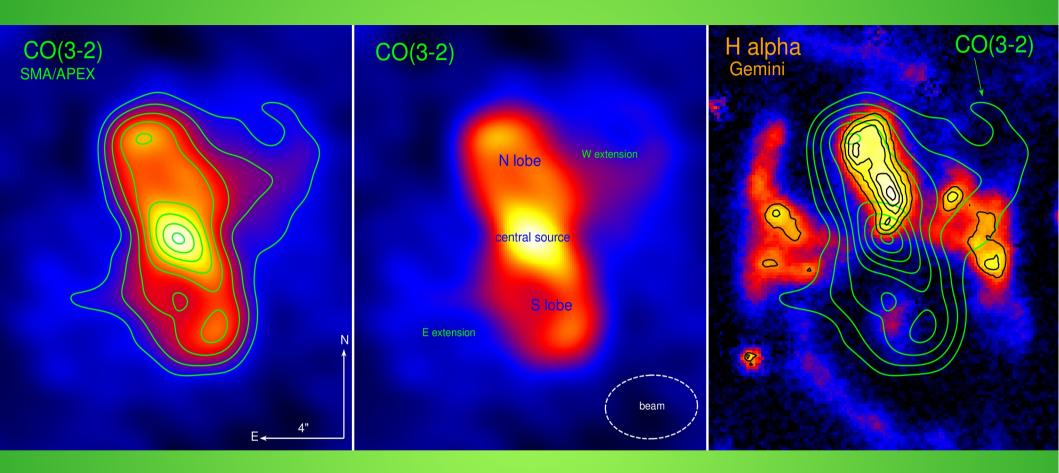

CK Vul: a submillimetre source rich in molecules

In April 2014 "we directed APEX towards CK Vul using a gap between two other projects. After only a few minutes, I was sure we discovered a new submillimtere-wave source that is very special" said in retrospect Tomek Kamiński, the leading author of the new study.

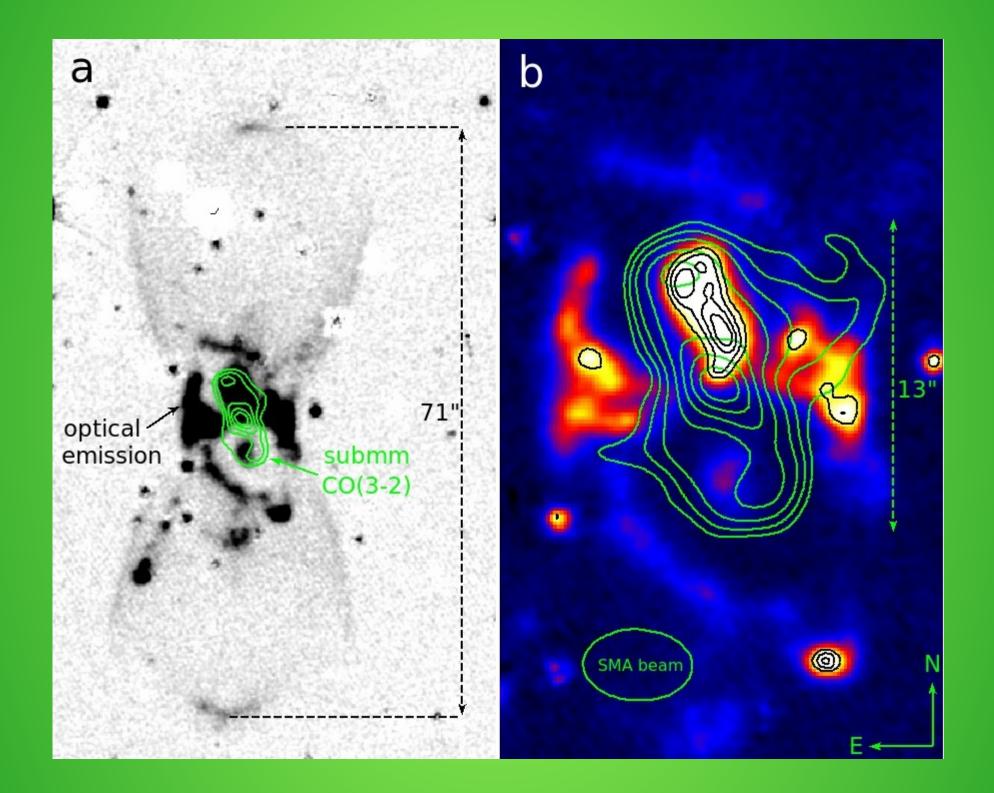

CK Vul: a submillimetre source rich in molecules

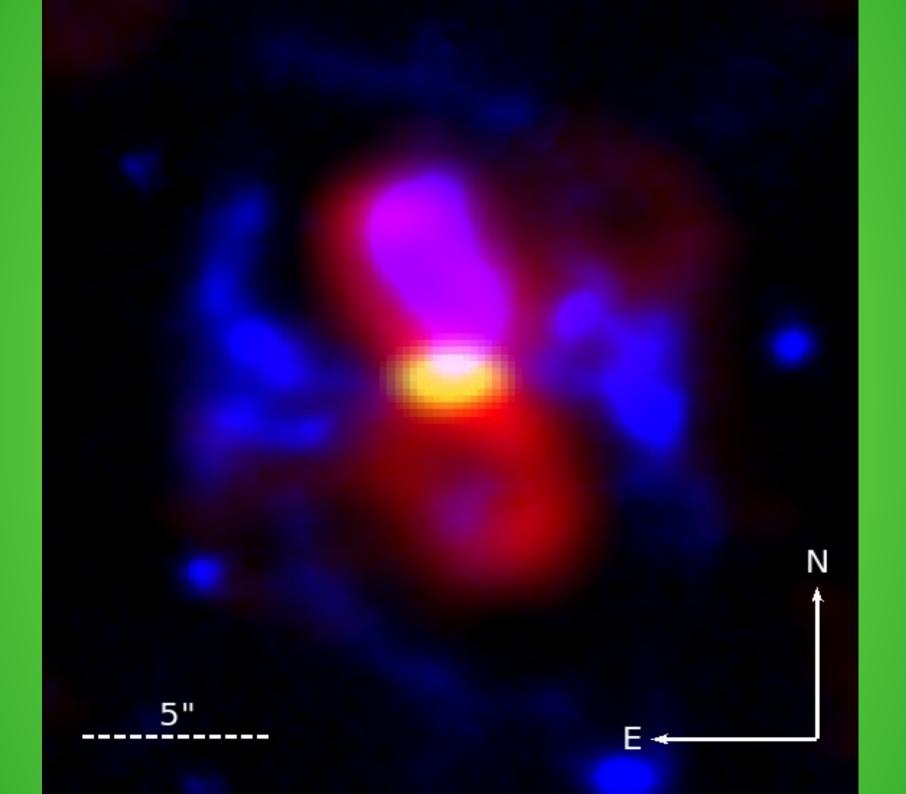
In April 2014 "we directed APEX towards CK Vul using a gap between two other projects. After only a few minutes, I was sure we discovered a new submillimtere-wave source that is very special" said in retrospect Tomek Kamiński, the leading author of the new study.

Kamiński, T., Menten, K.M., Tylenda, R., Hajduk, M., Patel, N.A., Kraus, A. *Nuclear ashes and outflow in the eruptive star Nova Vul 1670,* **Nature**, 520, 322

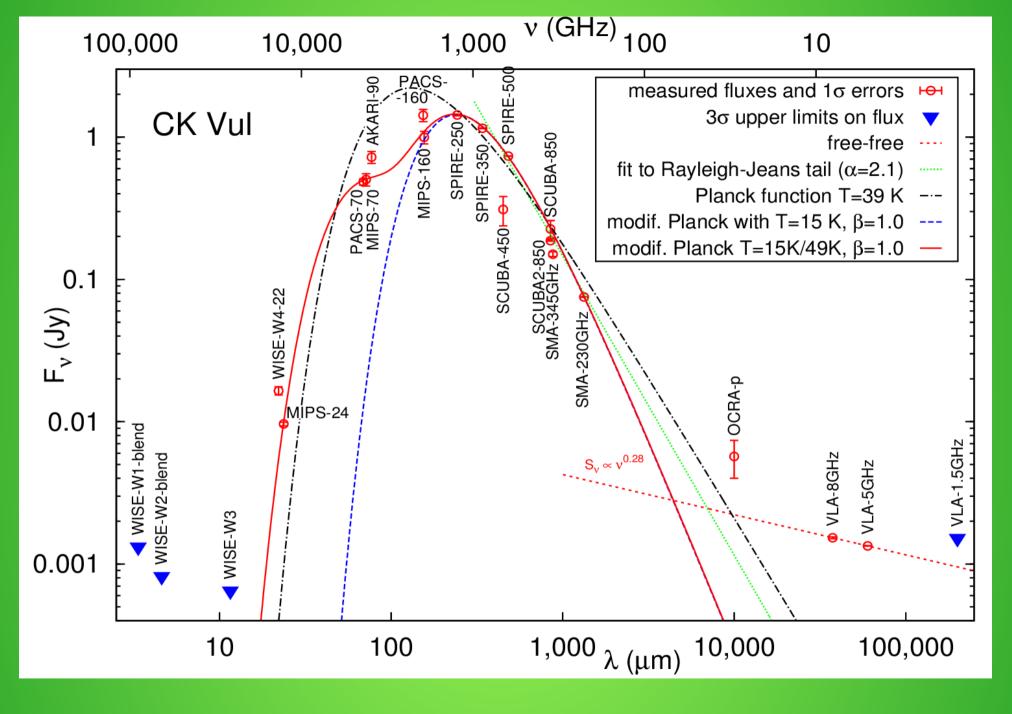


CK Vul as seen with APEX




CK Vul as seen with 100-m Effelsberg

Mole-	Transition	Frequency	E_u	A_{ul}	Detect.	V_{LSR}^{b}	FWHM ^c	$\int T_{\rm mb} dv^d$	Notes
cule		lab. (MHz)	(K)	(s^{-1})	SMA^{a}	$({\rm km}{\rm s}^{-1})$	$({\rm km}{\rm s}^{-1})$	$(K \text{ km s}^{-1})$	
NH ₃	J, K = 1, 1 para	23694.50	23.3	1.68E - 7		-9.2 ± 1.8	99.2±1.9	23.70±0.25	
NH ₃	J, K = 2, 2 para	23722.63	64.4	2.24E - 7		-14.5 ± 3.4	89.3±3.9	6.50 ± 0.23	
NH ₃	J, K = 3, 3 ortho	23870.13	123.5	2.57E - 7		-26.6 ± 3.4	86.1±3.9	6.35 ± 0.29	е
					/				f
SiO	J = 5 - 4	217104.98	31.3	5.20E - 4	\checkmark	-16.0 ± 2.8	78.8 ± 3.0	4.29 ± 0.14	g
¹³ CN	$N = 2 - 1, J = \frac{3}{2} - \frac{1}{2}$	217297.72	15.7	5.23E - 4	\checkmark	8.2 ± 7.1	79.3±9.7	1.73 ± 0.12	
¹³ CN	$N = 2 - 1, J = \frac{5}{2} - \frac{3}{2}$	217456.59	15.7	5.31E - 4	\checkmark	-16.5 ± 11.7	80.8±15.8	1.47 ± 0.11	g
¹³ CN	$N = 2 - 1, J = \frac{3}{2} - \frac{3}{2}$	217633.04	15.7	1.14E - 5		12.3 ± 7.0	33.1 ± 7.0	≲0.26	g
H_2CO	$J_{K_a,K_c} = 3_{0,3} - 2_{0,2}$	218222.19	21.0	2.82E - 4	\checkmark	-0.7 ± 17.4	25.0 ± 21.7	≲0.28	
H_2CO	$J_{K_a,K_c} = 3_{2,2} - 2_{2,1}$	218475.63	68.1	1.57E - 4	\checkmark	25.4 ± 9.0	21.7 ± 10.8	≲0.24	g h i
$C^{15}N?$	$N = 2 - 1, J = \frac{3}{2} - \frac{3}{2}$	219406.81	15.8	3.46E - 5	\checkmark	-41.3 ± 8.6	34.7±8.8	≲0.24	j j
$C^{18}O$	J = 2 - 1	219560.35	15.8	6.01E - 7	\checkmark	-5.6 ± 4.2	90.7 ± 4.6	2.05 ± 0.11	i
$C^{15}N?$	$N = 2 - 1, J = \frac{3}{2} - \frac{1}{2}$	219722.80	15.8	1.73E - 4	\checkmark	-79.3 ± 2.0	1.2 ± 2.0	≲0.17	
$C^{15}N$	$N = 2 - 1, J = \frac{5}{2} - \frac{3}{2}$	219933.63	15.8	2.08E - 4	\checkmark	-24.4 ± 11.5	53.4±13.4	0.60 ± 0.11	8
¹³ CO	J = 2 - 1	220398.68	15.9	6.07E - 7	\checkmark	-20.7 ± 1.4	101.8 ± 1.4	20.79 ± 0.18	
H_2CO	$J_{K_a,K_c} = 3_{1,2} - 2_{1,1}$	225697.78	33.5	2.77E - 4		19.8 ± 9.0	39.8 ± 9.1	≲0.57	<i>a</i>
CN	$N = 2 - 1, J = \frac{3}{2} - \frac{1}{2}$	226658.92	16.3	2.85E - 4		-15.9 ± 6.6	52.2 ± 7.2	2.01 ± 0.22	g
CN	$N = 2 - 1, J = \frac{5}{2} - \frac{3}{2}$	226876.46	16.3	3.43E - 4		-12.6 ± 5.8	51.1±7.0	2.47 ± 0.18	g 1-
CO	J = 2 - 1	230538.00	16.6	6.91E - 7	\checkmark	-1.6 ± 2.4	100.7 ± 2.4	51.01 ± 1.45	ĸ
$^{13}CS?$	J = 5 - 4	231220.69	33.3	2.51E - 4	\checkmark	-62.0 ± 5.9	98.9 ± 6.2	1.31 ± 0.19	l
²⁹ SiO?	J = 6 - 5	257255.22	43.2	8.78E - 4		-9.2 ± 7.5	75.1 ± 8.1	1.01 ± 0.08	i l
$HC^{15}N$	J = 3 - 2	258157.00	24.8	7.65E - 4		-44.4 ± 8.0	69.2 ± 8.6	0.46 ± 0.12	
$H^{13}CN$	J = 3 - 2	259011.80	24.9	7.72E - 4		-11.2 ± 1.3	74.3 ± 1.4	8.46 ± 0.15	
$H^{13}CO^+$	J = 3 - 2	260255.34	25.0	1.34E - 3		-17.8 ± 1.9	18.8 ± 2.0	0.56 ± 0.07	
SiO	J = 6 - 5	260518.02	43.8	9.12E - 4		-15.4 ± 3.6	62.3 ± 3.7	2.51 ± 0.14	
HCN	J = 3 - 2	265886.43	25.5	8.36E - 4		-5.7 ± 2.4	74.1 ± 2.5	16.45 ± 0.69	
N_2H^+	J = 3 - 2	279511.73	26.8	1.35E - 3		-42.7 ± 6.1	83.4±7.5	1.27 ± 0.07	
H_2CO	$J_{K_a,K_c} = 4_{1,4} - 3_{1,3}$	281526.93	45.6	5.88E - 4		17.8 ± 13.5	83.9±21.2	0.49 ± 0.05	
CS	J = 6 - 5	293912.09	49.4	5.23E - 4		-8.7 ± 3.7	49.5±3.9	0.53 ± 0.06	1
²⁹ SiO?	J = 7 - 6	300120.48	57.6	1.41E - 3		6.9 ± 8.5	45.6±10.5	0.30 ± 0.05	1 ;
$C^{18}O$	J = 3 - 2	329330.55	31.6	2.17E - 6	,	-16.1 ± 17.1	76.1±18.0	1.68 ± 0.38	ı
¹³ CO	J = 3 - 2	330587.97	31.7	2.19E - 6	\checkmark	-10.0 ± 2.0	97.9 ± 2.0	20.40 ± 0.51	
CN	$N = 3 - 2, J = \frac{5}{2} - \frac{5}{2}$	339487.80	32.6	8.18E - 5		-43.0 ± 12.3	24.2 ± 13.1	≲0.28	g i
CN	$N = 3 - 2, J = \frac{5}{2} - \frac{3}{2}$	340031.29	32.6	1.15E - 3		-0.5 ± 5.2	105.6 ± 6.0	3.26 ± 0.16	g
CN	$N = 3 - 2, J = \frac{7}{2} - \frac{5}{2}$	340248.80	32.7	1.24E - 3		-18.4 ± 5.0	81.3 ± 5.7	3.26 ± 0.17	8
CS	J = 7 - 6	342882.85	65.8	8.40E - 4		-52.5 ± 8.4	65.0 ± 9.3	≲0.48	
²⁹ SiO?	J = 8 - 7	342980.84	74.1	2.12E - 3		33.5 ± 0.3	62.0 ± 0.3	≲0.30	i l
$HC^{15}N$	J = 4 - 3	344200.11	41.3	1.88E - 3		12.4 ± 7.1	24.4 ± 7.5	≲0.25	i
$H^{13}CN$	J = 4 - 3	345339.77	41.4	1.90E - 3	\checkmark	-3.4 ± 1.9	59.0 ± 1.9	2.64 ± 0.13	
CO	J = 3 - 2	345795.99	33.2	2.50E - 6	\checkmark	-13.1 ± 0.7	92.9 ± 0.7	47.03 ± 0.34	
$H^{13}CO^+$	J = 4 - 3	346998.34	41.6	3.29E - 3	\checkmark	-5.8 ± 4.5	39.9 ± 4.8	0.69 ± 0.19	
SiO	J = 8 - 7	347330.58	75.0	2.20E - 3		-13.2 ± 6.2	87.5 ± 7.2	1.76 ± 0.13	
$HN^{13}C$	J = 4 - 3	348340.90	41.8	2.03E - 3		4.0 ± 7.1	30.7 ± 7.3	0.34 ± 0.09	
CCH?	$N = 4 - 3, J = \frac{9}{2} - \frac{7}{2}, \frac{7}{2} - \frac{5}{2}$	349364.58	41.9	7.26E - 4		0.1 ± 34.7	38.8 ± 63.0	≲0.30	i
HCN	J = 4 - 3	354505.48	42.5	2.05E - 3		-8.7 ± 1.2	77.0 ± 1.3	8.98 ± 0.16	
HCO^+	J = 4 - 3	356734.22	42.8	3.57E - 3		-17.1 ± 5.8	27.2 ± 6.2	0.71 ± 0.11	
CS	J = 8 - 7	391846.89	84.6	1.26E - 3		1.4 ± 0.3	45.6 ± 0.3	0.66 ± 0.14	i
$HC^{15}N$	J = 5 - 4	430235.32	62.0	3.75E - 3		-22.2 ± 2.8	26.3 ± 2.8	1.98 ± 0.29	ı
CO	J = 4 - 3	461040.77	55.3	6.13 <i>E</i> – 6		-22.7 ± 2.1	89.2 ± 2.2	28.95 ± 0.73	
H ¹³ CN	J = 8 - 7	690552.08	149.2	1.61E - 2		-36.9 ± 17.7	52.0 ± 21.4	2.72 ± 0.72	
CO	J = 6 - 5	691473.08	116.2	2.14E - 5		-68.3 ± 6.6	110.2 ± 7.1	24.87 ± 1.12	


Maps of the CO(3-2) emission from SMA/APEX

List of the detected molecules:

CO, 13 CO, C¹⁸O, CN, 13 CN, C¹⁵N, HCN, H¹³CN, HC¹⁵N, HN¹³C, H₂CO, HCO⁺, H¹³CO⁺, CS, SiO, NH₂

SED of CK Vul

Physical conditions observed in CK Vul

Dust temperature: 15-50 K.

Dust luminosity: ~0.9 L_{o} (this excludes a post-AGB hypothesis)

Molecular rotation temperature: 8-22 K

CO column density: 4 10¹⁷ cm⁻²

With the observed dimensions and assuming the standard abundances the latter results in a mass of the molecular region of \sim 0.1 M_o (this excludes a classical nova hypothesis)

Isotope ratios

CK Vul sun nova CNO-cycles

Hevelius Nova (Nova Vul 1670) as a red nova:

- * light curve (three years lasting eruption with three maxima)
- * strong molecular emission from CK Vul (no molecular emission was detected for 27 post-novae)
- * mass of the dusty molecular region of CK Vul (~0.1 M_o)
- * low luminosity remnant (~0.9 L_o from dust in CK Vul)
- * element abundances in the nebular region and isotope ratios in the molecular region of CK Vul

Thank you for your attention!