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➡The gas composition is altered significantly 
(e.g. freeze-out, ices evaporation...)



Why study chemistry?
• Chemistry and the physics of the star formation 

process are coupled (gas temperature, 
ionization fraction...) 

• Molecular lines can be used as probes of the 
gas physical conditions (temperature, density, 
gas velocity) 

• Planetary system may inherit of some of the 
species that are formed during the early phases 



In this talk…

• I will the review the recent progress in our 
understanding of the dense core chemistry 

• I will also present a few results on the chemistry 
in embedded (Class 0) protostars obtained with 
NOEMA 

• I will discuss some perspectives for the study of 
dense core chemistry with ALMA and NOEMA 



Physical conditions in cores

• Density in the cloud determined from the extinction 
of background stars

Alves et al. (2001)



Nielbock et al. (2012)  



• At the core 
center:

Tdust ' 8K

n(H2) = 3⇥ 105cm�3



Freeze-out on grains
• Depletion timescale (Tielens et al. 1982): 

• Typical grain radius:  

• B68 :  

⌧dep = (�grvSngr)
�1

n(H2) = 3⇥ 105 cm�3

⌧dep = 3000 yr

⌧dep = 109

n(H2)
yr

0.1µm



• Thermal desorption: 

• Binding energy:  

• At 10 K, thermal desorption is extremely slow 

• Non-thermal desorption processes exist, e.g. 
cosmic rays photodesorption

Eb ⇠ 1000� 2000 K

�des =
�

1012 e
�Eb

kTdust

⇥�1

s
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Maret, Bergin & Tafalla (2013) 



• The H13CO+ (1-0)  line observations and models indicate: 

• Cosmic-ray photodesorption (CRP) 

• Grain growth at the core center

Maret, Bergin & Tafalla (2013) 



Deuterium fractionation
Deuterium fractionation:

H+
3 + HD ⌦ H2D+ + H2

The reverse reaction has an activation barrier of ~ 
200 K,  so the reaction is irreversible at 10 K:

H+
3 + HD! H2D+ + H2

At low temperature:

H2D+

H+
3

>>
HD
H2



• H2D+ can itself react with HD: 

• Deuterium is then transfered to ions, e.g. DCO+, 
N2D+, etc… 

• CO is the major destroyer of H2D+ and therefore 
the H2D+ abundance increases as CO freezes-
out

H2D
+ +HD ! D2H

+ +H2



850 um continuum 

H-MM1

o-H2D+ (372 GHz)  

p-D2H+ (692 GHz)  

Parise et al. (2011) 



Vastel et al. (2012) 

692 GHz 

1477 GHz 



Water vapour

• First detection 
of water vapor 
in a prestellar 
core (c.f. Eric’s 
talk)

Caselli et al. (2012) 



Complex organics

• Detection of 
complex organic 
molecules in a 
prestellar core 
(L1689B) 

• Challenge for 
chemical models

Bacmann et al. (2012) 
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Complex organics?



Ice lines in Class 0 protostars

Anderl et al. (in prep)

H218O (31,3-22,0)  

NGC1333-IRAS4B

Jørgensen et al. (2010)

H218O (31,3-22,0) 



Anderl et al. (in prep)

Observations Model

• The differences in 
the observed 
C18O, N2H+ and 
CH3OH line maps 
are likely due to 
the carbon 
monoxyde and 
water ice lines
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Complex organics

• COM emission observed in the most luminous 
sources (                 ) 

Belloche et al. (in prep.)
L
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� 6L�



Complex organics

• COM emission observed in the most luminous 
sources (                 ) 

Belloche et al. (in prep.)
L
bol

� 6L�



Proto-stellar phase

Fig. courtesy of T. Bergin



Conclusions
• Dense core chemistry is characterized by: 

• The freeze-out of heavy species (CO, H2O, etc.) 

• Large deuteration fractionation  (H2D+, D2H+) 

• Growing evidence of the important role of secondary UV 
photons (desorption, COM formation) 

• Class  0 protostar chemistry is dominated by the thermal 
evaporation of CO and H2O ices

• Important progresses expected in the coming years as ALMA 
and NOEMA ramp up to their full capacities



Perspectives

• ALMA will allow to make high resolutions 
images of several tracers (H2D+, D2H+) to study 
the chemistry/physical conditions on the small 
scales (or in more distant cores) 

• NOEMA is also well suited to study cores; its 
large instantaneous bandwidth (16 GHz) and 
dual band capability should allow for an 
inventory of species (e.g. COMs) in cores


