Dense core chemistry as seen by Herschel, NOEMA and ALMA

Sébastien Maret

Institut de Planétologie et d'Astrophysique de Grenoble

The formation of a star

Molecular cloud

Prestellar

Protostar Outflows and disk

Main sequence star with planets

The formation of a star

Molecular cloud $n({
m H}_2) \sim 10^3 {
m cm}^{-3}$ $T \sim 10 {
m K}$

Prestellar core

Protostar Outflows and disk

Main sequence star with planets

 $n(\mathrm{H}_2) \sim 10^7 \,\mathrm{cm}^{-3}$ $T \gtrsim 100 \mathrm{K}$

The formation of a star

Main sequence star with planets

The gas composition is altered significantly (e.g. freeze-out, ices evaporation...)

Why study chemistry?

- Chemistry and the physics of the star formation process are coupled (gas temperature, ionization fraction...)
- Molecular lines can be used as probes of the gas physical conditions (temperature, density, gas velocity)
- Planetary system may inherit of some of the species that are formed during the early phases

In this talk...

- I will the review the recent progress in our understanding of the dense core chemistry
- I will also present a few results on the chemistry in embedded (Class 0) protostars obtained with NOEMA
- I will discuss some perspectives for the study of dense core chemistry with ALMA and NOEMA

Physical conditions in cores

 Density in the cloud determined from the extinction of background stars

Alves et al. (2001)

Nielbock et al. (2012)

• At the core center:

 $T_{\rm dust} \simeq 8 \,{\rm K}$

$$n({\rm H}_2) = 3 \times 10^5 {\rm cm}^{-3}$$

20azimuthally averaged 18 azimuthally averaged, $n_{\rm H} \ge 6 \times 10^2 \text{ cm}^{-3}$ 0 Dust temperature [K] 16 - best ray-tracing fit 14 12 **- -**E 10 -SE --W Volume density [cm⁻³] 10 $\propto r^{-2}$ 10^{4} 103 - best ray-tracing fit 10 100 Radius ["]

Freeze-out on grains

• Depletion timescale (Tielens et al. 1982):

$$\tau_{\rm dep} = (\sigma_{\rm gr} v S n_{\rm gr})^{-1}$$

• Typical grain radius: $0.1\,\mu{
m m}$

$$\tau_{\rm dep} = \frac{10^9}{n({\rm H}_2)} \,\mathrm{yr}$$

• B68 : $n(H_2) = 3 \times 10^5 \text{ cm}^{-3}$ $\tau_{\text{dep}} = 3000 \text{ yr}$ • Thermal desorption:

$$\tau_{\rm des} = \left(10^{12} \, e^{\frac{-E_{\rm b}}{kT_{\rm dust}}}\right)^{-1} \, s$$

- Binding energy: $E_{\rm b} \sim 1000-2000\,{\rm K}$
- At 10 K, thermal desorption is extremely slow
- Non-thermal desorption processes exist, e.g. cosmic rays photodesorption

Bergin & Tafalla (2007)

Maret, Bergin & Tafalla (2013)

- The H¹³CO⁺ (1-0) line observations and models indicate:
 - Cosmic-ray photodesorption (CRP)
 - Grain growth at the core center

Maret, Bergin & Tafalla (2013)

Deuterium fractionation

Deuterium fractionation:

$$\mathrm{H}_{3}^{+} + \mathrm{HD} \rightleftharpoons \mathrm{H}_{2}\mathrm{D}^{+} + \mathrm{H}_{2}$$

The reverse reaction has an activation barrier of \sim 200 K, so the reaction is irreversible at 10 K:

$$\mathrm{H}_3^+ + \mathrm{HD} \to \mathrm{H}_2\mathrm{D}^+ + \mathrm{H}_2$$

At low temperature:

• H₂D+ can itself react with HD:

$H_2D^+ + HD \rightarrow D_2H^+ + H_2$

- Deuterium is then transferred to ions, e.g. DCO+, N₂D+, etc...
- CO is the major destroyer of H₂D+ and therefore the H₂D+ abundance increases as CO freezesout

Parise et al. (2011)

o-H₂D+ (372 GHz)

p-D₂H+ (692 GHz)

4

Velocity (km/s)

6

8

6

Velocity (km/s)

Vastel et al. (2012)

5

5.5

-24*28'00

-24*29'00"

-24*30'00"

Water vapour

 First detection of water vapor in a prestellar core (c.f. Eric's talk)

Caselli et al. (2012)

Complex organics

- Detection of complex organic molecules in a prestellar core (L1689B)
- Challenge for chemical models

Bacmann et al. (2012)

Pre-stellar phase

Major Gas-Phase Tracers in Starless Cores

Fig. courtesy of T. Bergin

Ice lines in Class 0 protostars

Jørgensen et al. (2010)

Anderl et al. (in prep)

 The differences in the observed C¹⁸O, N₂H+ and CH₃OH line maps are likely due to the carbon monoxyde and water ice lines

Anderl et al. (in prep)

 The differences in the observed C¹⁸O, N₂H+ and CH₃OH line maps are likely due to the carbon monoxyde and water ice lines

Anderl et al. (in prep)

Complex organics

• COM emission observed in the most luminous sources ($L_{bol} \ge 6 L_{\odot}$)

Belloche et al. (in prep.)

Complex organics

• COM emission observed in the most luminous sources ($L_{bol} \ge 6 L_{\odot}$)

Belloche et al. (in prep.)

Proto-stellar phase

Major Gas-Phase Tracers in Protostars

Conclusions

- Dense core chemistry is characterized by:
 - The freeze-out of heavy species (CO, H₂O, etc.)
 - Large deuteration fractionation (H₂D⁺, D₂H⁺)
 - Growing evidence of the important role of secondary UV photons (desorption, COM formation)
- Class 0 protostar chemistry is dominated by the thermal evaporation of CO and H₂O ices
- Important progresses expected in the coming years as ALMA and NOEMA ramp up to their full capacities

Perspectives

- ALMA will allow to make high resolutions images of several tracers (H₂D+, D₂H+) to study the chemistry/physical conditions on the small scales (or in more distant cores)
- NOEMA is also well suited to study cores; its large instantaneous bandwidth (16 GHz) and dual band capability should allow for an inventory of species (e.g. COMs) in cores